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Preface

The secondary title of the course is inspired by Al Rorth’s book Who Gets What – and Why. These notes are
heavily borrowed from Guillaume Haeringer’s excellent book Market Design (Haeringer, 2017). Alejandro
Robinson (assistant professor of economics at University of Exeter), my ex-student, coauthor and friend, has
been enormously generous to let me use his class notes on Market Design (Robinson-Cortés, 2021). In many
parts of the notes, I have literally paraphrased texts from Guillaume’s book and Alejandro’s notes. I made
these notes principally for my own use to teach the course. They must be full of errors and typos. Also,
interpretations of some results are my own, which may be misconstrued. So, as we go on, we surely will
discover a huge room for improvement. I have also used gender neutral pronouns such as “their”, “them”, etc.
to refer to an individual or an agent. I hope this does not create much confusions. Please let me know about all
errors or any other comments you have at kaniska.dam@itam.mx.

Mexico City
Spring, 2023
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Part I

Preliminaries of markets and market design
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Chapter 1

Markets

1.1 An exchange economy

An exchange economy or market consists of two individuals (traders), denoted by i = 1, 2, and two goods,
denoted by j = 1, 2. Each trader is born with an endowment of each good. Formally, ωij ≥ 0 is trader i’s
endowment of good j. The aggregate endowment of good j is thus given by ωj = ω1j + ω2j .

Each individual has preferences over the bundles of the two commodities, which is assumed to be rational
(complete and transitive). We would assume that preferences are continuous so that they can be represented by
a utility function u : X → R where X ⊆ R2

+ is the set of all consumption bundles. Consumption bundles are
denoted by x, y, z, etc. where xij denotes trader i’s consumption of good j.

The market with two traders and two goods are represented by the Edgeworth box in Figure 1.1. The two
corners represents the origins of the two agents—the southwest corner corresponds to trader 1 and the northeast
corner, to trader 2. The endowment is denoted by the point ω. The blue curves are agent 1’s indifference
curves given their preferences u(x11, x12). The red curves are the indifference curves given their preferences
v(x21, x22). The size of the Edgeworth box is determined by the aggregate endowments of the two goods—the
length represents ω1 and the width represents ω2.

O1

O2

ω

ω11 ω21

ω12

ω22

x

Figure 1.1: A market with two traders.

Now we turn to the concept of an allocation in the Edgeworth box. In Figure 1.1, the point x is an allocation
with the property that the aggregate consumption of any good must exhaust its aggregate endowment. Formally,
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Definition 1.1: Allocation

A point x in the Edgeworth box is a (consumption) allocation if x1j + x2j = ωj for j = 1, 2. A set of
allocations is given by:

A = {x | xij ≥ 0 for all i = 1, 2, j = 1, 2 and x1j + x2j = ωj for j = 1, 2}.

Definition 1.1 asserts that if a point x represents an allocation, then it cannot be outside the Edgeworth
box. In other words, the way an allocation is defined incorporates the notion of feasibility, and in our context,
“allocation” is simply a short-hand for “feasible allocation”. Also, A, the set of allocations is the entire box.
A simpler version of the Edgeworth box economy is obtained when there is only one good (a good without
subscript j). Let it’s aggregate endowment be ω = ω1 + ω2. A (consumption) allocation, x of this economy
depicted in Figure 1.2. An allocoation x = (x1, x2) is simply a point on the line (of length ω) so that x1+x2 =

ω1 + ω2 = ω.

O1 O2

ω1 ω2

x1 x2

Figure 1.2: A market with two traders and one good.

Every point like x on the line represents an allocation, and, conversely, every allocation can be represented
by a point, or division of the line.

In what follows, we would also assume that the traders are self-interested, i.e., the preferences of no trader
depends only on their own consumption bundles, and not on that of the other trader. Formally,

u(x11, x12, x21, x22) = u(x11, x12),

v(x11, x12, x21, x22) = v(x21, x22).

In other words, we would abstract from consumption externalities.

1.1.1 Pareto efficiency, individual rationality and the core

Pareto efficient allocations. The notion of Pareto efficiency is associated with the idea of improving the
situations of the traders in the exchange economy. Consider an allocation x in the Edgeworth box. Can there
be a different allocation x′ that makes the traders better off? If this is the case for both traders, then allocation
x is not a “good” allocation. Formally,

Definition 1.2: Pareto efficient allocation

An allocation x′ Pareto dominates another allocation x if u(x′i1, x
′
i2) ≥ u(xi1, xi2) for all i = 1, 2, and

u(x′i1, x
′
i2) > u(xi1, xi2) for at least one i. An allocation x is a Pareto efficient allocation if there is

no allocation x′ that Pareto dominates x. The set of all Pareto efficient allocations is called the contract
curve.

Definition 1.2 asserts that at an alternative allocation, there is no way to make both traders better off and
make at least one strictly better off. How do we compute and represent a Pareto efficient allocation in the
Edgeworth box? In Figure 1.3, allocations x and y are both Pareto efficient allocations. At these allocations, at
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which the indifference curves of traders 1 and 2 are tangent to each other, it is impossible to make one trader
better strictly off without making the other strictly worse off. The curve that joins all such points is the contract
curve for the exchange economy.

O2

ω

v

u∗u1u0

xx0 x1

z

y

Figure 1.3: Pareto efficient allocations.

The tangency points can be derived in the following way.

• Fix a utility level of trader 2 at v, i.e., v(x21, x22) = v. Think of proposing allocations at all of which
we are required to guarantee at least v to trader 2.

• Start from an allocation at which trader 1 obtains u0. That is, start from allocation such as x0 (on trader
1’s indifference curve labeled u0).

• Try to improve trader 1’s utility. We must move to a higher indifference curve of this trader, say at level
u1, i.e., we must propose an allocation such as x1.

• However, u1 is not the best we can do. At an allocation like x1, trader 2 obtains a utility level that is
strictly higher than v, but there is still room for improvement for trader 1 (respecting the minimum utility
constraint of trader 2).

• We can go as far as allocation x at which the two indifference curves are tangent to each other. Going
further to x will now improve the utility of trader 1, but at the cost of diminishing utility of trader 2. So,
x is a Pareto efficient allocation. Note also that a point like z is not Pareto efficient. It yields u∗ to trader
1, but z is on the indifference curve of trader 2, which is strictly lower than that gives them v (so, the
minimum utility constraint is violated).

So, to find a Pareto efficient allocation we would solve the following problem:

max
{x11, x12, x21, x22}

u(x11, x12),

subject to v(x21, x22) ≥ v,
x11 + x21 = ω1,

x12 + x22 = ω2.

The first constraint is the minimum utility constraint of trader 2, and the other two constraints are the feasibility
constraints of goods 1 and 2. We would rather solve the following numerical example.
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Example 1.1: Finding Pareto efficient allocations

Let the utility functions are given by u(x11, x12) = x11x12 and v(x21, x22) = x21x22, and the endow-
ments of the two goods are given by (ω11, ω12) = (2, 2) and (ω21, ω22) = (2, 1). So, the aggregate
endowments are ω1 = 2 + 2 = 4 and ω2 = 2 + 1 = 3 (i.e., the Edgeworth box has length 4 and width
3). We can write the above maximization problem as follows:

max
{x11, x12}

u(x11, x12) = x11x12,

subject to v(x21, x22) = x21x22 ≥ v,
x11 + x21 = ω1 = 4,

x12 + x22 = ω2 = 3.

First, note that the first order condition of the above maximization problem is given by:

x12
x11︸︷︷︸
−MRS1

=
x22
x21︸︷︷︸
−MRS2

= α,

i.e., at any Pareto efficient allocation, the indifference curves of the two traders are tangent to each other.
The above equations imply that

xi2 = αxi1 for i = 1, 2.

Substituting the above into the second feasibility constraint, we get

α(x11 + x21︸ ︷︷ ︸
=ω1

) = ω2 ⇐⇒ α =
ω2

ω1
=

3

4
.

Therefore, the contract curve is given by:

x12 =
ω2

ω1
· x11 =

3

4
· x11.

The contract curve is the diagonal of the Edgeworth box. It is easy to see from Figure 1.3 that the
minimum utility constraint must hold with equality, i.e., α(x21)

2 = v. Moreover, x22 = αx21. Let
the Pareto efficient allocations to trader i be denoted by (x̂i1, x̂i2). The last two conditions alongwith
α = ω2/ω1 yield

(x̂21, x̂22) =

(√
ω1v

ω2
,

√
ω2v

ω1

)
=

(√
4v

3
,

√
3v

4

)
.

Using the two feasibility constraints, we obtain

(x̂11, x̂12) =

(
ω1 −

√
ω1v

ω2
, ω2 −

√
ω2v

ω1

)
=

(
4−

√
4v

3
, 3−

√
3v

4

)
.

Observations

• The Pareto efficient consumption xij does not depend on the an individual’s endowment of each
good, ωij . It only depends on the aggregate endowment of each good, ω1 and ω2 (i.e., the length
and width of the Edgeworth box). Thus, if we change the length and width of the box, the Pareto
efficient allocations (which lie on the diagonal of the box) change.

• A given Pareto efficient allocation depends on the minimum utility level v of trader 2, and hence,
there are a continuum of such allocations, one for each v.
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Exercise 1.1

Let the utility functions be given by u(x11, x12) = min{x11, x12} and v(x21, x22) = min{x21, x22}.
The endowments are (ω11, ω12) = (2, 0) and (ω21, ω22) = (0, 3). Find the set of Pareto efficient
allocations.

Utility possibility frontier. We shall now define two concepts associated with Pareto efficiency. Consider the
efficient allocations and compute the maximum value function of the maximization problem in Example 1.1:

u =
ω2

ω1︸︷︷︸
α

· (x11)2 =
ω2

ω1
·
(
ω1 −

√
ω1v

ω2

)2

⇐⇒
√
ω1u

ω2
+

√
ω1v

ω2
= ω1

⇐⇒
√
u+
√
v =
√
ω1 · ω2 =

√
12. (UPF)

Condition (UPF) describes what is called the utility possibility frontier (UPF) or the Pareto frontier or the
bargaining frontier of the Edgewroth box economy. We can also write (UPF) as

u = φ(v) ≡ (
√
ω1 · ω2 −

√
v)2. (UPF′)

In many contexts, the final utilities that are accrued to the traders, rather than their allocations, are more im-
portant and convenient to use. The above discussion is easily generalizable to a market with n ≥ 2 traders and
m ≥ 2 goods.

Definition 1.3: Utility possibility set

Let X = {1, . . . , m} be the set of m goods that can be potentially traded in an exchange economy or
market with the set of traders, N = {1, . . . , n}. Let trader i’s utility function over m goods be given by
ui(xi), where xi = (xi1, . . . , xim) denotes trader i’s allocations of m goods, which is continuous and
monotonic. The function

φ(u2, . . . , un) = max
x

{
u1(x1) | ui(xi) ≥ ui for i ∈ N \ {1} and

n∑
i=1

xij = ωj for all j ∈ X

}

is called the utility possibility frontier of the exchange economy. The set

U = {(u1, . . . , un) ∈ Rn+ | u1 ≤ φ(u2, . . . , un)}

is called the utility possibility set of the exchange economy.

The Pareto frontier (UPF) and the associated utility possibility set are depicted in Figure 1.4. The utility
possibility set is simply the combinations of payoffs that can be reached by the market participants by trading
what they initially have (endowments) in a decentralized manner. So, we can see that there is a one-to-one
correspondence between the set of (feasible) allocations and the utility possibility set. Also, there is a one-to-
one correspondence between the contract curve and the Pareto frontier.

Let us derive the UPF for an exchange economy wherein there are n ≥ 2 traders and 2 goods, 1 and 2.
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0

u

v

ω1ω2

ω1ω2

U
u = φ(v)

Figure 1.4: The Pareto frontier and the utility possibility set.

Example 1.2: UPF with many traders

Consider the set of traders N = {1, . . . , n} and two goods, 1 and 2. The utility function of trader i is
given by ui(xi) where xi = (xi1, xi2) denotes trader i’s allocations of 2 goods. Trader i’s endowments
are given by (ωi1, ωi2), and the aggregate endowment of good j = 1, 2 is given by

∑n
i=1 ωij = ωj . A

Pareto efficient allocation, x̂ = (x̂1, . . . , x̂n) solves

max
x

u1(x1) = x11x12,

subject to u2(x2) = x21x22 ≥ u2, (U2)
...

un(xn) = xn1xn2 ≥ un, (Un)

x11 + . . .+ xn1 = ω1, (F1)

x12 + . . .+ xn2 = ω2. (F2)

At the Pareto efficient allocations, the marginal rate of substitution between the two goods (MRS) of all
traders must be equal (i.e., the indifference curves of all traders are tangent to each other):

MRS1 = . . . = MRSn ⇐⇒ x12
x11

= . . . =
xn2
xn1

= α (say).

Therefore, we have xi2 = αxi1 for all i ∈ N . Substituting this into the second feasibility constraint
(F2), we obtain

α(x11 + . . .+ xn1︸ ︷︷ ︸
=ω1 from (F1)

) = α · ω1 = ω2 ⇐⇒ α =
ω2

ω1
.

Constraints (U2)-(Un) would bind at the optimum, and hence, we have

α(x21)
2 =

ω2

ω1
· (x21)2 = u2, . . . , α(xn1)

2 =
ω2

ω1
· (xn1)2 = un

⇐⇒ x̂21 =

√
ω1u2
ω2

, . . . , x̂n1 =

√
ω1un
ω2

.
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Let u1 denote the maximized utility of trader 1, which is given by:

u1 = α(x̂11)
2 =

ω2

ω1
· (x̂11)2 =

ω2

ω1
· (ω1 − x̂21 − . . .− x̂n1)2

⇐⇒ ω1u1
ω2

=

(
ω1 −

√
ω1u2
ω2
− . . .−

√
ω1un
ω2

)2

⇐⇒
√
ω1u1
ω2

+

√
ω1u2
ω2

+ . . .+

√
ω1un
ω2

= ω1

⇐⇒
√
u1 +

√
u2 + . . .+

√
un =

√
ω1 · ω2 ⇐⇒ u1 = φ(u2, . . . , un) ≡

(
√
ω1 · ω2 −

n∑
i=2

√
ui

)2

.

The above is our desired UPF.

Individually rational allocations. We have seen so far that a Pareto efficient allocation does not depend on
individual’s endowment of each good. The next property we would like to impose on an allocation is individual
rationality. We would require that each trader must do at least as well as what they could with their endowments.
Formally,

Definition 1.4: Individually rational allocation

An allocation x in the Edgeworth box is individually rational if u(x11, x12) ≥ u(ω11, ω12) and
v(x21, x22) ≥ v(ω21, ω22).

The above definition asserts that, at an individually rational allocation, each trader obtains utility that is at
least as large as their utility evaluated at their endowments of the two goods.

O1

O2

x

v(ω
21 , ω

22 )

u(ω11 , ω12) ω

Figure 1.5: Individually rational allocations.

In Figure 1.5, both traders obtain higher utility at a point like x that that evaluated at ω because at x lies at
a higher indifference curve of each trader. Therefore, the set of individually rational allocations relative to the
endowment point ω is lens-shaped shaded region.

Core allocations. The next property we would like to impose on an allocation is that it is in the core of the
exchange economy. This idea will be generalized in Chapter 4. The notion of core is related to the idea that
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some allocations can be blocked or objected by the traders. In our 2×2 exchange economy, there are two ways
to block a proposed allocation—(a) each trader on their own can object to a proposed allocation, and (b) the
two traders together can block a proposed allocation. In a more general model wherein there are n > 2 traders,
any non-empty subsets of traders, called coalitions, are allowed to block an allocation (there are 2n − 1 such
coalitions). Formally,

Definition 1.5: Core allocations

An allocation x in the Edgeworth box is blocked by the trader(s) if there is another (feasible) allocation
x′ such u(x′11, x

′
12) ≥ u(x11, x12) and v(x′21, x

′
22) ≥ u(x21, x22) with strict inequality for at least one

trader. An allocation x is a core allocation if there is no other allocation x′ with which x can be blocked.

O1

O2

x

ω

y

z

CORE

Figure 1.6: The core.

What is crucial is that the traders can object to an allocation by proposing another allocation that is feasible
for them. Let us analyze the various possibilities of blocking.

• Consider the case when a single trader can block a proposed allocation. Note that the only feasible
allocation that a trader has and can be used to block an allocation their endowments of the two goods,
i.e., (ωi1, ωi2) for each i = 1, 2. Therefore, allocations like y and z (in Figure 1.6) cannot be core
allocation either (y will blocked by trader 1 and z, by trader 2). Consequently, a core allocation must lie
within the lens-shaped shaded region in Figure 1.6.

• Next, consider the possibility of blocking by the two traders together. Proposing an alternative allocation
to block an initial one means that the two traders can exchange their endowments to create a “new
allocation” that makes both of them better off. In Figure 1.6, an allocation like x will be blocked by
the traders together. To see this, create another lens-shaped region with x and ω. Any allocation in
the newly-created region yields strictly higher utility of both traders. If we keep on doing this, the only
allocations that would not be blocked are those on the contract curve (when no further lens-shaped region
of improvement can be created).

From the above discussion we can conclude

Theorem 1.1

An allocation in the Edgeworth box is Pareto efficient and individually rational if and only if it is a core
allocation.

10



The proof is easy for the Edgeworth box economy. In Figure 1.6, the part of contract curve that lies inside
the lens-shaped region is the core of our exchange economy. For an exchange economy with more than 2
traders, it is always true that a core allocation is Pareto efficient and individually rational, but the converse is
not true in general.

Exercise 1.2: Core is a stronger concept than Pareto efficiency and individual rationality

Consider an exchange economy with three traders, 1, 2 and 3, and two goods, 1 and 2. The util-
ity functions are given by ui(xi1, xi2) = xi1xi2 for i = 1, 2, 3. The endowments are given by
(ω11, ω12) = (1, 9), (ω21, ω22) = (5, 5) and (ω31, ω32) = (9, 1). Show that there is at least one
allocation that is Pareto efficient and individually rational, but it is not a core allocation. Find the core
allocations of this market.

The reason for which Theorem 1.1 does not hold for an exchange economy with more than 2 traders is that
the possibility of blocking a proposed allocation increases as the number of traders grows. If there are 5 traders,
then there are 25−1 =31 coalitions that can potentially block an allocation. However, a market with 20 traders,
this number becomes 220 − 1 =1,048,575. One may also wonder what happens if we replicate our Edgeworth
box economy.

Exercise 1.3: Core shrinks under replication

Consider an exchange economy with two traders, 1 and 2, and two goods, 1 and 2. The utility functions
are given by ui(xi1, xi2) = xi1xi2 for i = 1, 2. The endowments are given by (ω11, ω12) = (9, 1) and
(ω21, ω22) = (1, 9). Show that Theorem 1.1 holds for this market.
Next, consider a replication of the Edgeworth box in the following way. Add two more traders, 3 and 4.
Trader 3 is the identical twin of trader 1, and trader 4 is the identical twin of trader 2. This is to say that
ui(xi1, xi2) = xi1xi2 for i = 1, 2, 3, 4, and (ω31, ω32) = (9, 1) and (ω41, ω42) = (1, 9). Show that
Theorem 1.1 does not hold for the replicated economy.

Edgeworth conjectured in 1881 that the core is large in a small market, whereas it is small in a large market.
Aumann (1964) proves a striking result that the core of an exchange economy shrinks as the market is replicated.
Moreover, he shows that if the market is replicated infinitely, the core converges to a single allocation. This
motivates our analysis of a competitive or Walrasian equilibrium.

1.1.2 The Walrasian equilibrium

We now introduce a Walrasian allocation for the Edgeworth box economy. For that we require a price system
which the traders would take as given while trading with each other. Let (p1, p2) ∈ R++ be the price vector.
The budget set of trader i = 1, 2 is given by:

Bi(p1, p2) = {(xi1, xi2) ∈ R+ | p1xi1 + p2xi2 ≤ p1ωi1 + p2ωi2}.

Definition 1.6: Walrasian equilibrium

A Walrasian (or competitive) equilibrium for the Edgeworth box economy is a price vector p∗ = (p∗1, p
∗
2)

and an allocation x∗ = ((x∗11, x
∗
12), (x∗21, x

∗
22)) in the Edgeworth box such that for each i = 1, 2,

(x∗i1, x
∗
i2) solves

max
{xi1, xi2}

ui(xi1, xi2),

subject to p1xi1 + p2xi2 ≤ p1ωi1 + p2ωi2.
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In a Walrasian equilibrium, given the commodity prices, each trader maximizes their utility subject to the
budget constraint. Because x∗ is an allocation, we must by definition have supply equal to demand for every
good, i.e.,

x1j + x2j = ω1j + ω2j for each good j = 1, 2.

Also, notice that a Walrasian equilibrium depends on the endowments, ω. If we change ω, we change the
competitive equilibrium. The maximization problem in Definition 1.6 clearly yields

MRS1
12 = −p1

p2
= MRS2

12.

In Example 1.3, we shall compute Walrasian equilibrium allocations under specific functional forms of the
utility functions. Figure 1.7 depicts a competitive equilibrium where the line joining ω and x∗ represents the
relative prices with slope −p∗1/p∗2. As we can clearly see that x∗ is a core allocation. We state the following

O1

O2

ω

x∗

Figure 1.7: A competitive equilibrium.

result (without proof) that describes the welfare properties of a Walrasian allocation.

Theorem 1.2: First theorem of welfare economics

Assume that all traders have monotone utility functions, i.e., ui(xi) > ui(yi) for xi > yi for all i ∈ N .
Let (x∗, p) be a Walrasian equilibrium. Then, x∗ is a core allocation (and is, therefore, Pareto efficient
as well).

Exercise 1.4: Proof of Theorem 1.2

Prove Theorem 1.2. Is the converse true? Give a graphical argument.

1.2 Mechanism design

1.2.1 Implementation of Walrasian allocations

Let us start with the following example of an Edgeworth box economy in order to understand the kind of
problem we would analyze in this section.
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Example 1.3: Manipulability of Walrasian allocation

Consider the following Edgeworth box economy wherein the endowments are given by (ω11, ω12) =

(3, 9) and (ω21, ω22) = (9, 3). Trader 1’s preferences are given by u(x11, x12) = x11x12. However,
trader 2 has one of the two alternative preferences, v(x21, x22) = x21+x22 and v′(x21, x22) =

√
2x21+

1√
2
x22. The government, who wants to implement the Walrasian allocation (which is Pareto efficient)

at prices (p, 1), does not know the true preferences of trader 2. Let us first compute the Walrasian
equilibrium under both circumstances.
First, consider the preference profile given by u(x11, x12) and v(x21, x22). Let (x∗, p∗) be the Wal-
rasian equilibrium which is given by the following set of equations:

MRS1
12 = −x12

x11
= −p,

px11 + x12 = 3p+ 9,

MRS2
12 = −1 = −p,

px21 + x22 = 9p+ 3,

x11 + x21 = 12,

x12 + x22 = 12.

The above system yields (x∗11, x
∗
12) = (6, 6), (x∗21, x

∗
22) = (6, 6) and p∗ = 1.

Next, consider the preference profile given by u(x11, x12) and v′(x21, x22). Let (x′, p′) be the
Walrasian equilibrium which is given by the following set of equations:

MRS1
12 = −x

′
12

x′11
= −p′,

px′11 + x′12 = 3p′ + 9,

MRS2
12 = −2 = −p′,

px′21 + x′22 = 9p′ + 3,

x′11 + x′21 = 12,

x′12 + x′22 = 12.

The above system yields (x′11, x
′
12) = (3.75, 7.5), (x′21, x

′
22) = (8.25, 4.5) and p′ = 2.

Now suppose that trader 2’s true preferences is given by v(x21, x22) which is private informa-
tion. Suppose further that the government asks the traders to report their preferences in an effort to
implement the Walrasian allocation (6, 6), (6, 6)). Note that if trader 2 falsifies their preferences by
reporting v′(·, ·), then the government would implement x′ = ((3.75, 7.5), (8.25, 4.5)). In fact, this
trader has incentives to do so because v(8.25, 4.5) = 12.75 > 12 = v(6, 6).

The notion of mis-reporting must be understood carefully. When trader 2 misreport, they do not com-
pare v′(8.25, 4.5) with v(6, 6), but compares v(8.25, 4.5) with v(6, 6). The idea is that a trader mis-report
their preferences in an effort to obtain an allocation which is different from the one that would have been im-
plemented if they would have reported truthfully. Then, the trader evaluates their true utility function at the
allocation obtained by mis-reporting. If this utility is strictly higher than that at the allocation that would have
been implemented under truthful reporting, we say that the trader has incentive to falsify their true preferences.

In Example 1.3, the reason behind the failure to induce trader 1 to report truthfully their preferences is
described in the left panel of Figure 1.8. The bundles in the red-shaded region in the left panel were less
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Figure 1.8: Sufficient condition for truthful implementability.

preferred to the Walrasian allocation of trader 2, (x∗21, x
∗
22) under preferences v(·, ·). However, when their

preferences have changed to v′(·, ·), those bundles became more preferred to (x∗21, x
∗
22), which induces trader

2 to mis-report their preferences. So, for truthful implementability of the competitive allocation, we require a
sort of preference reversal, i.e., for trader 2, (x∗21, x

∗
22) must be weakly preferred to (x′21, x

′
22) under the utility

function v(·, ·); but (x′21, x
′
22) must be weakly preferred to (x∗21, x

∗
22) under the utility function v′(·, ·). This

is to say that (x′21, x
′
22) must lie in the blue-shaded region in the left panel of Figure 1.8

Suppose that the alternative preferences of trader 2 is given by v′′(x21, x22) = x21x22 instead of v′(x21, x22).
In this case we have p′′ = p∗ and x′′ = x∗. Under preferences v′′(·, ·), the set of bundles that are less preferred
to (x∗21, x

∗
22), i.e., the lower contour set of (x∗21, x

∗
22), expands (the red-shaded region in the right panel of

Figure 1.8). In other words, if the bundles that were inferior to (x∗21, x
∗
22) under preferences v(·, ·) are still

inferior for trader 2 under the changed preferences v′′(·, ·), then the same allocation x∗ must be chosen under
the new preferences. This monotone way of changing preferences is called the Maskin-monotonicity which
guarantees truthful implementation of the competitive allocation in the Edgeworth box.

1.2.2 Allocation of objects among several buyers

Consider an economy with one seller (agent S) of single object, and two potential buyers (agents 1 and 2). An
allocation of the economy is to allocate the object to a single buyer (think of the sale of a single unit of an
indivisible private good). An allocation of the economy is denoted by a. The set of possible allocations is given
by:

A =

{
(xS , x1, x2, tS , t1, t2) ∈ {0, 1}3 × R3 |

∑
i

xi = 1 and
∑
i

ti ≤ 0

}
.

In words, in an allocation, xi = 1 if agent i = S, 1, 2 gets the object, and xi = 0 if they do not get the object.
We allow for monetary transfers in that ti denotes the transfer received by agent i = S, 1, 2. Note that some
ti can be negative. The feasibility restrictions we impose that the aggregate allocation is 1 (as there is a single
unit to allocate), and the aggregate transfer must be non-positive. The agents will be characterized by their
valuation for the good. In particular, the seller has a valuation θS and the buyers have valuations θ1 and θ2. The
utility function of an agent with valuation or “type” θi given by:

ui(a, θi) = θixi + ti.

We shall assume that the seller’s valuation θS is common knowledge, and thus normalize it to 0; however, θ1
and θ2 are private information. We assume that both θ1 and θ2 are drawn from uniform distribution on [0, 1]
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Definition 1.7: Ex-post efficiency

An allocation a ∈ A is ex-post efficient if it allocates the object to the highest-valuation buyer and if it
involves no waste of money, i.e., for all θ = (θ1, θ2),

xi(θ)(θi −max{θ1, θ2}) = 0 for all i, and
∑
i

ti = 0.

The first part of the above definition reads as (a) if max{θ1, θ2} = θ1, then (x1, x2) = (1, 0), and hence,
x1(θ1 − θ1) = 0 and x2(θ2 − θ1) = 0, and (b) if max{θ1, θ2} = θ2, then (x1, x2) = (0, 1), and hence,
x1(θ1 − θ2) = 0 and x2(θ2 − θ2) = 0.

Example 1.4: Winner pays the highest valuation

Suppose we want to implement the following allocation a(θ): For i, j = 1, 2, and i 6= j,

xi(θ) =

{
1 if θi ≥ θj ,
0 if θi < θj .

and ti(θ) = − θixi(θ);

xS(θ) = 0, and tS(θ) = −(t1(θ) + t2(θ)).

The above allocation rule allocates the object to the highest-valuation buyer, and the seller receives a
transfer equal to the highest valuation. The allocation rule is not only ex-post efficient, but also it is very
attractive for the seller in that the seller extracts the entire consumer surplus generated by the trade if the
allocation is implemented.
Suppose the buyers are expected utility maximizers. The question is: if buyer 2 always announces their
true valuation, will it be optimal for buyer 1 to do the same? For each θ1, buyer 1’s problem is to
announce a type θ̃1 so as to solve

max
θ̃1

E[θ1x1(θ̃1, θ2)+t1(θ̃1, θ2)] = Prob.(θ2 ≤ θ̃1)[θ1·1−θ̃1·1)+Prob.(θ2 > θ̃1)[θ1·0−0) = (θ1−θ̃1)θ̃1.

The above maximization yields the optimum announcement θ̃1 =θ1/2. Likewise, for buyer 2 we have
θ̃2 =θ2/2. The buyers have incentives to under-report their valuation in order to lower the transfer they
must make to the seller in case they are the winner. Of course, this increases the probability of not
obtaining the object. However, each buyer would exploit this trade-off, at least to some extent.

So, does there exist some other allocation rule that can be truthfully implemented? The answer is yes.

Example 1.5: Winner pays the second-highest valuation

Suppose we want to implement the following allocation â(θ): For i, j = 1, 2, and i 6= j,

xi(θ) =

{
1 if θi ≥ θj ,
0 if θi < θj .

and ti(θ) = − θjxi(θ);

xS(θ) = 0, and tS(θ) = −(t1(θ) + t2(θ)).

The above rule implies that if buyer i wins the object (i.e., i is the highest-valuation buyer), they pay
the lower valuation.

Now, let us analyze the incentive of buyer 1 to reveal truthfully their valuation when buyer 2 an-
nounces θ̃2 (the case of buyer 2 is symmetric). First, consider the case when θ̃2 ≤ θ1. By announcing
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θ̃1 = θ1 (the true valuation), buyer 1 obtains the object, and their utility is given by θ1 − θ̃2 ≥ 0. If they
announce θ̃1 6= θ1, they obtain the object as long as θ̃1 ≥ θ̃2. In this case, buyer 1’s utility is θ1 − θ̃2
which is the same as that under truthful revelation. On the other hand, if θ̃1 < θ̃2, buyer 1 does not
obtain the object, and consumes 0 utility. So, for θ̃2 ≤ θ1, buyer 1 does not have incentive to falsify
their valuation. Next, suppose that θ̃2 > θ1. In this case, buyer 1 obtains 0 (buyer 2 gets the object)
whether or not they report truthfully as long as θ̃1 < θ̃2. By contrast, if buyer 1 announces θ̃1 > θ̃2,
they obtain the object; however, buyer 1 gets a utility equal to θ1 − θ̃2 < 0. Therefore, in this case
too, buyer 1 does not have incentive to falsify their type. So, the optimal announcement of buyer 1 is
θ̃1 = θ1 regardless of what the other buyer announces. Formally, telling truth is a weakly dominant
strategy for both buyers. Thus, the allocation rule can be implemented even if buyers’ valuations are
private information—it suffices to ask each buyer to announce their type, and then choose â(θ).

A mechanism wherein each buyer is asked to report their type is called a direct mechanism. What can we
say about the implementability of an allocation rule when agents are asked to announce a function of their type
(an indirect mechanism)?

Example 1.6: First-price sealed-bid auction

In a first-price sealed-bid auction, each buyer (bidder) i submits a sealed-bid bi ≥ 0. The bids are then
opened, and the buyer with the highest bid gets the object and pays their bid to the seller (auctioneer).
Because buyer valuations are private information, our solution concept would be the Bayesian Nash
equilibrium (BNE). In a Bayesian game, the strategy (bid) of each buyer i is a function of their type θi.
For the interest of simplicity, suppose buyers follow a linear strategy, bi(θi) = βiθi with βi ∈ [0, 1].
Consider bidder 1’s problem who solves

max
0≤b1≤β2

(θ1 − b1) · Prob.(b2(θ2) ≤ b1) = (θ1 − b1) · (b1/β2).

The upper limit β2 on b1 is because β2 is buyer 2’s maximum bid (when θ2 = 1), and hence, buyer 1
should never bid more than β2. Buyer 2 solves a similar problem. So, the optimal bidding functions are
given by:

b1(θ1) = min

{
1

2
θ1, β2

}
and b2(θ2) = min

{
1

2
θ2, β1

}
.

If β1 = β2 = 1
2 , we have min{θi/2, βj} = θi/2. In this case, the first-price auction yields the same

outcome as Example 1.4.

Example 1.7: Second-price sealed-bid auction

In a second-price sealed-bid auction, each buyer (bidder) i submits a sealed-bid bi ≥ 0. The bids are
then opened, and the buyer with the highest bid gets the object, but pays the second-highest bid to the
seller (auctioneer). Let us solve the equilibrium for more than 2 buyers as the argument is very similar
to Example 1.5. Let N = {1, . . . , n} be the set of n ≥ 2 potential buyers of a single indivisible object.
Buyer i’s payoff is given by:

ui(θi) =

{
θi −maxj 6=i bj if bi > maxj 6=i bj ,

0 if bi < maxj 6=i bj .

We also assume that if there is a tie, i.e., bi = maxj 6=i bj , the object goes to each winning bidder with
equal probability. We now show that bi = θi for all i ∈ N is a dominant strategy equilibrium. Consider,
say buyer 1, and let b̂1 ≡ maxj 6=1 bj be the highest competing bid.
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By bidding θ1, buyer 1 will win if θ1 > b̂1, and not if θ1 < b̂1 (if θ1 = b̂1, buyer 1 is indiffer-
ent between winning and losing). Suppose, however, that buyer 1 bids b1 < θ1. If θ1 > b1 ≥ b̂1,
buyer 1 still wins and their utility is still θ1 − b̂1. If b̂1 > θ1 > b1, buyer 1 still loses. However, if
θ1 > b̂1 > b1, then buyer 1 loses whereas if they had bid b1 = θ1, they would have consumed a positive
utility. Thus, bidding less than θ1 can never increase buyer 1’s utility but in some circumstances may
actually decrease it. A similar argument shows that it is not profitable to bid more than θ1.

It is not difficult to see that, when there are two buyers, i.e., n = 2, the second-price sealed-bid
auction yields the same outcome as Example 1.5.
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Part II

Two-sided matching without transfers
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Chapter 2

The marriage market

2.1 Preferences

This is the classic model of Gale and Shapley (1962) wherein they consider matching of men to women, and
hence, the name “marriage market”. I shall consider matching between firms and workers instead. Think of
small firms hiring workers. We will use feminine pronouns for firms, and masculine pronouns for workers.
Make the following assumptions so that the matching is one-to-one:

1. Each firm can hire at most one worker. Think of firms as small shops run by owners. Each shop has a
capacity limit which we normalize to 1.

2. No worker can moonlight in other firms.

3. All firms pay the same salary which is exogenously given. A firm-worker pair does not bargain over the
salary.

Let F = {f1, . . . , fm} and W = {w1, . . . , wn} be the sets of firms and workers, respectively. A generic firm
will be denoted by f ∈ F , and a generic worker will be denoted byw ∈W . The preference of any individual, f
or w is simply a list of names of individuals on the other side of the market. In general, the preference relation
of any individual is assumed to be rational (i.e., reflexive, antisymmetric and transitive) so that she/he cab
compare any two individuals on the other side of the market. However, for the marriage market, we consider
only strict preferences when an individual compares any two distinct individuals on the other side. Consider a
market where Ana, Carolina and Diana are owners of three firms so that we write F = {Ana, Carolina, Diana}
to identify them. On the other hand, Alonso, Jorge and Victor are three workers, i.e., W = {Alonso, Jorge,
Victor}. We would represent the preference relation of Ana over the three workers and that of Jorge over the
three owners as follows.

PAna = Jorge, Alonso, Ana, Victor;
PJorge = Ana, Diana, Carolina, Jorge.

The above representation means the following:

1. For Ana, Jorge and Alonso are the acceptable workers. By contrast, Victor is unacceptable for Ana—she
prefers not to hire Victor. In other words, she prefers to remain unmatched or to be matched to herself
rather than hiring Victor. Among the acceptable workers, Ana strictly prefers Jorge to Alonso.

2. For Jorge, working for any firm is acceptable, i.e., he prefers to work in one of the three firms rather than
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being unemployed or unmatched. Moreover, Jorge’s first preference is Ana, second preference is Diana,
and Carolina is his least preferred option.

3. We can equivalently represent the preferences of Ana and Jorge respectively as

Jorge�Ana Alonso�Ana Ana�Ana Victor;
Ana�Jorge Diana�Jorge Carolina�Jorge Jorge.

Formally, the preferences of a firm f ∈ F are represented by a strict ordering over the set W ∪ {f}, which is
the set of all workers plus herself. Likewise, the preferences of a worker w ∈ W are represented by a strict
ordering over the set F ∪ {w}, which is the set of all firms (or owners) plus himself. We take the preference
relations as the primitives for the marriage market.

2.2 One-to-one matching

A matching is a mapping from the set of all individuals to itself. In other words, to each individual, a matching
assigns her/his partner. The matching function will be denoted by µ. So, µ(Ana)=Alonso means Alonso is
matched with Ana. It is also the case that µ(Alonso)=Ana. On the other hand, µ(Victor)=Victor means Victor
is unmatched. Formally,

Definition 2.1

A one-to-one matching is a mapping or function µ : F ∪ W → F ∪ W such that (a) for each firm
f ∈ F , µ(f) ∈W ∪ {f}, and for each worker w ∈W , µ(w) ∈ F ∪ {w}; and (b) µ(f) = w if and only
if µ(w) = f .

The first part of the above definition leaves the possibility that any individual can remain unmatched. The
second part, on the other hand, asserts that the matching is one-to-one (it is a bit strange to denote a function
and its inverse by the same Greek letter!).

We would also like to compare several matchings by defining preferences over matching outcomes. Con-
sider two outcomes µ and µ′. If µ(Jorge)=Ana and µ′(Jorge)=Ana, then Jorge is indifferent between the two
matchings. On the other hand, if µ(Jorge)=Carolina and µ′(Jorge)=Diana, then Jorge prefers matching µ′ to
matching µ because Diana�Jorge Carolina. The crucial assumption here is that, in any matching, Jorge only
cares about his partner, and does not care about who else is matched with whom under µ and µ′. If that were
the case, we would say that the marriage market is subject to externality, and solving for the market equilibrium
(which we have not defined yet) would have much more complicated.

2.3 Stability of the marriage market

The matching function µ defines an outcome of the marriage market. In a very general setting, there may
be many outcomes in all of which we may not be interested. We would only be interested in reasonable
outcomes. One uninteresting outcome is that nobody is matched with nobody, which is called the empty
matching. Another example is µ(Ana)=Victor, i.e., Ana is matched with an unacceptable worker.

Example 2.1

Consider two firm owners Ana and Carolina, and two workers Alonso and Jorge. The preferences are as
follows.
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PAna = Jorge, Alonso, Ana ;
PCarolina = Alonso, Jorge, Carolina ;
PAlonso = Ana, Alonso, Carolina ;
PJorge = Ana, Carolina, Jorge.

Let µ(Alonso)=Carolina and µ(Jorge)=Ana. In this outcome, both Ana and Jorge are happy because each
of them is matched with their most preferred partner. Carolina is also happy because she is matched
with Alonso, her most preferred partner. However, Alonso is matched with his unacceptable partner,
Carolina. Can he be better-off by proposing a new matching? The answer is yes because in a different
matching µ′ if µ′(Alonso)=Alonso, then he is better-off by remaining unmatched. We would say that
matching µ is not individually rational for Alonso.

Example 2.2

Consider two firm owners Ana and Carolina, and two workers Alonso and Jorge. The preferences are as
follows.

PAna = Alonso, Jorge, Ana ;
PCarolina = Jorge, Alonso, Carolina ;
PAlonso = Ana, Carolina, Alonso ;
PJorge = Ana, Carolina, Jorge.

Let µ(Alonso)=Carolina and µ(Jorge)=Ana. Now consider Ana and Alonso. Under µ, none of them is
matched to their most preferred partner, which they would have liked. Formally, Alonso�Ana µ(Ana)
and Ana�Alonso µ(Alonso). Thus, if under a different matching µ′ we have µ′(Alonso)=Ana, then both
of them are strictly better-off. We would say that (Ana, Alonso) pair would block matching µ.

Let us now introduce the concept of stability of the marriage market.

Definition 2.2

A matching µ is stable if (a) it is individually rational, i.e., for each individual i ∈ F ∪W , we have
µ(i) %i i, i.e., individual i weakly prefers to be matched, and (b) there are no blocking pairs, i.e., there
is no firm-worker pair (f, w) such that µ(f) 6= w, and w �f µ(f) and f �w µ(w).

Note that in defining preferences over individuals, we have only considered strict orderings. However, weak
orderings are permissible when individuals compare different matchings. In part (a) of the above definition, we
have thus written µ(i) %i i because i weakly prefers µ to a different matching µ′ wherein µ′(i) = i. Moreover,
when an individual market participant blocks a matching (i.e., the matching is not individually rational) or a
pair blocks a matching, they do not require to take into account what is happening to the rest of the market.
In other words, an individual or a pair (not matched previously) do not require a stable matching to block the
initial one.

2.4 The Deferred Acceptance Algorithm: Finding a stable matching

Now, we ask the most relevant question whether a stable matching exists for our marriage market. Because the
preferences are ordinal (i.e., no utility function is attached even if preferences are rational), we cannot use the
standard equilibrium condition of a market for goods with money, i.e.,

marginal rate of substitution between goods i and j =
price of good i
price of good j

.
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We would instead use algorithms that would lead to a stable allocation. Consider the following example.

Example 2.3

Consider the following preference profiles.

PAna = Alonso, Victor, Jorge, Ana ;
PCarolina = Victor, Jorge, Alonso, Carolina ;
PDiana = Alonso, Victor, Jorge, Diana ;
PAlonso = Carolina, Ana, Diana, Alonso ;
PJorge = Ana, Carolina, Diana, Jorge ;
PVictor = Ana, Carolina, Diana, Victor.

Consider now the following worker proposing algorithm. At each stage, each worker proposes to his
most preferred firm. Each firm decides whether to accept or reject the offer. A rejected worker proposes
in the next stage. The algorithm stops when there are no rejections.

Step 1: Both Jorge and Victor propose to Ana. Ana accepts Victor and rejects Jorge. Alonso proposes to
Carolina, which is accepted. Diana receives no proposal. The provisional matching at this step is

µ1(Alonso)=Carolina, µ1(Jorge)=Jorge, µ1(Victor)=Ana and µ1(Diana)=Diana.

Step 2: Jorge proposes to Carolina because a proposal to Ana would have been rejected as he knows that
µ1(Ana)=Victor�Ana Jorge. Carolina rejects Alonso, her provisional partner, and accepts Jorge
as Jorge�Carolina Victor=µ1(Carolina). The provisional matching at this step is

µ2(Alonso)=Alonso, µ2(Jorge)=Carolina, µ2(Victor)=Ana and µ2(Diana)=Diana.

Step 3: Alonso proposes to Ana because Carolina would have rejected him anyway. Ana rejects Victor
and accepts Alonso. Diana still does not receive a proposal. The provisional matching at this step
is

µ3(Alonso)=Ana, µ3(Jorge)=Carolina, µ3(Victor)=Victor and µ3(Diana)=Diana.

Step 4: Victor proposes to Carolina because Ana would have rejected his proposal. Carolina rejects Jorge
and accepts Victor. Diana is still alone. The provisional matching at this step is

µ4(Alonso)=Ana, µ4(Jorge)=Jorge, µ4(Victor)=Carolina and µ4(Diana)=Diana.

Step 5: Jorge proposes to Diana because both Ana and Carolina would have rejected his proposal as they
have already hired Alonso and Victor who come before Jorge in each firm’s preference list. Diana
accepts Jorge as Jorge�Diana Diana=µ4(Diana). There is no more rejections, and hence, the
algorithm stops here. The final allocation is given by:

µ(Alonso)=Ana, µ(Jorge)=Diana and µ(Victor)=Carolina.

Note that the final outcome is individually rational because no individual has an unacceptable partner.
It is also easy to see that there is no blocking pair. Hence, the final matching µ is stable.

The above algorithm is called the Deferred Acceptance algorithm (DA, henceforth) which is due to Gale
and Shapley (1962). In this algorithm, individuals on one side of the market propose, and those on the other
side accept or reject proposals. Later we shall see that which side proposes matters. In Example 2.3, the stable
matching is unique. This may not always be the case. We now formally state the DA.
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The Deferred Acceptance algorithm. Consider the workers-proposing version of the algorithm. Initially, all
workers are active and no individual is provisionally matched. Proceed in steps as follows.

Step 1: Each worker w proposes to his most preferred firm among his list of acceptable firms (if he has any
acceptable choices). Each firm f rejects any unacceptable proposals and, if more than one acceptable
proposal is received, holds the most preferred and rejects all others.
...

Step k: Any worker rejected at step k − 1 makes a new proposal to its most preferred acceptable firm who has
not yet rejected him. If no acceptable choices remain, he makes no proposal. Each firm holds her most
preferred acceptable offer till date, and rejects the rest.

STOP: The algorithm stops when no further proposals are made, and match each firm to the worker (if any)
whose proposal she has been holding.

Note: the firms-proposing version of the algorithm is analogous.

We next show that the set of stable matchings is nonempty in every marriage market. A key aspect of the DA
algorithm is that both sides of the market go through their ranking lists in opposite directions. In the workers-
proposing version, workers propose to firms in the order of their preference rankings from top to bottom. They
start proposing to their most preferred firm, and continue to propose to firms in the order of their ranking as
long as their proposals are not accepted. By contrast, the provisional matches of firms go from bottom from
to top: every time a firm accepts a proposal, it is from a worker who is better than her previous match. In the
firms-proposing version of the algorithm, the opposite obtains: firms go from top to bottom, and workers go
from bottom to top.

Theorem 2.1: (Gale and Shapley, 1962)

The outcome of the Deferred acceptance algorithm is a stable matching.

Proof. Let µ be the outcome of the workers-proposing DA algorithm. Workers only propose to acceptable
firms, and firms only accept offers from acceptable workers. Therefore, µ is individually rational. Let w ∈ W
and f ∈ F be such that f �f µ(w). Then, w had proposed to f in some iteration of the algorithm. Because
µ(w) 6= f , f accepted the proposal of some worker w′ with w′ �f w. Then, µ(f) �f w′ �f w. Hence, (w, f)

is not a blocking pair. Therefore, µ is stable. �

Opposing interests in the marriage market. In Example 2.3, it is easy to show that the both the worker-
proposing and firms-proposing DA algorithms produce the same stable matching. Thus, the stable matching is
unique. However, this is always not the case. Consider the following example.

Example 2.4

Consider the following preference profiles.

PAna = Alonso, Jorge, Victor, Ana ;
PCarolina = Alonso, Victor, Jorge, Carolina ;
PDiana = Alonso, Jorge, Vivtor, Diana ;
PAlonso = Ana, Carolina, Diana, Alonso ;
PJorge = Ana, Carolina, Diana, Jorge ;
PVictor = Ana, Diana, Carolina, Victor.
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First consider the workers-proposing version of the DA algorithm. In Step 1, Ana receives proposals
from all the three workers out of which she keeps Alonso. Carolina, Diana, Jorge and Victor are all
unmatched at the end of this step. In Step 2, Carolina receives proposal from Jorge and Diana, from
Victor. They accept the respective offers because both workers are acceptable for each of the firm. The
algorithm stops here, and it yields

µW (Alonso)=Ana, µW (Jorge)=Carolina and µW (Victor)=Diana .

Now consider the firms-proposing version. In Step 1, Alonso receives proposals from all the three firms
out of which he agrees to work for Ana. Carolina, Diana, Jorge and Victor are all unmatched at the
end of this step. In Step 2, Jorge receives offer from Diana and Victor, from Carolina. They accept the
respective offers because both firms are acceptable for each of the worker. The algorithm stops here,
and it yields

µF (Alonso)=Ana, µF (Jorge)=Diana and µF (Victor)=Carolina .

So, there are two stable matchings µW and µF with µW 6= µF depending on which side proposes in the
algorithm.

Note that Ana and Alonso are indifferent between µW and µF because they are matched to each other under
both matchings. However, µW (Jorge)�Jorge µF (Jorge) and µW (Victor)�Victor µF (Victor). So, µW is weakly
preferred to µF by all workers. By contrast, µF (Carolina)�Carolina µW (Carolina) and µF (Diana)�Diana µW (Diana).
Therefore, µF is weakly preferred to µW by all firms.

It follows from Theorem 2.1 and Example 2.4 together that the DA algorithm produces two stable outcomes,
µW and µF . But there may be more stable matchings than µW and µF which the algorithm does not yield. The
following is an interesting result regarding the optimality of stable matchings.

Proposition 2.1: (Gale and Shapley, 1962)

LetMS be the set of stable matchings of the marriage market. Further, let the workers-proposing version
of the Deferred Acceptance algorithm yields µW , while the firms-proposing version yields µF . Then,
for every matching µ ∈MS , we have (a) µW �w µ �w µF for allw ∈W , and (b) µF �f µ �f µW
for all f ∈ F .

The above proposition simply asserts that, among all the stable matchings, µW is the best outcome and µF
is the worst outcome for all the workers. On the other hand, among all the stable matchings, µF is the best
outcome and µW is the worst outcome for all the firms. We would call µW the worker-optimal stable matching
and µF the firm-optimal stable matching. For a formal proof of Proposition 2.1, see Robinson-Cortés (2021,
Theorem 5.2.1). Proposition 2.1 follows from a more general result:

Theorem 2.2: (Knuth, 1976)

If µ and µ′ are stable matchings, then µ �w µ′ for all w ∈W if and only if µ′ �f µ for all f ∈ F .

Proof. Let µ and µ′ be stable matchings such that µ �w µ′ for all w ∈ W . Towards a contradiction, suppose
it is not true that µ′ �f µ for all f ∈ F . Then, there exists some f ∈ F with w = µ(f) such that

w = µ(f) �f µ′(f). (2.1)

On the other hand, because µ �w µ′ for all w ∈W , it must be the case that

f = µ(w) �w µ′(w). (2.2)

26



Thus, it follows from (2.1) and (2.2) that w �f µ′(f) and f �w µ′(w), meaning that (w, f) blocks µ′, which
is a contradiction to the fact that µ′ is a stable matching. �

We now prove two important results in matching theory.

Proposition 2.2: Decomposition lemma

Let µ and µ′ be stable matchings under the same (strict) preference profile. Let Wµ′ ⊂ W be the set
of workers who prefers µ′ to µ, and Fµ ⊂ F be the set of firms who prefer µ to µ′. Then, each worker
w ∈ Wµ′ is matched, under both µ and µ′, to a firm in Fµ (but not necessarily to the same firm).
Likewise, each firm f ∈ Fµ is matched, under both µ and µ′, to a worker in Wµ′ .

Proof. For any w ∈ Wµ′ , we have f = µ′(w) �w µ(w) �w w. If the second relation does not hold, µ
would not be individually rational for w. Also, µ′(w) ∈ F because µ′(w) �w w, and hence, there is a firm
f ∈ F such that f = µ′(w). Then for f , it must be that µ(f) �f µ′(f) = w, which follows from Theorem
2.2. Thus, for any w ∈ Wµ′ , we have µ′(w) ∈ Fµ, i.e., µ′ maps Wµ′ to Fµ. Moreover, f ∈ µ′(Wµ′) means
that µ′(f) ∈ Wµ′ , and we just have shown that, in this case, f = µ′(w) ∈ Fµ. Therefore, µ′(Wµ′) ⊆ Fµ, and
hence,

∣∣Wµ′
∣∣ ≤ |Fµ|. Now repeat the same argument for any f ∈ Fµ to show that w = µ(f) ∈ Wµ′ , i.e., µ

maps Fµ to Wµ′ , and that |Fµ| ≤
∣∣Wµ′

∣∣. Therefore, the sets Wµ′ and Fµ have the same cardinality, i.e., there
are as many workers in Wµ′ as there are firms in Fµ. Because both µ and µ′ are one-to-one functions, and Wµ′

and Fµ are finite with the same cardinality, the result follows. �

The Decomposition lemma, which is obtained as a corollary to Theorem 2.2, asserts that an individual who
prefers one stable matching to another is matched at both to a partner with the reverse preferences. We next
prove the following result.

Theorem 2.3: Rural hospital theorem

The set of unmatched individuals is the same under every stable matching.

Proof. Take two stable matchings µ and µ′. Suppose that an arbitrary worker w is unmatched under µ, but
matched under µ′, i.e., µ(w) = w and µ′(w) ∈ F . Because, µ′ is stable, it is individually rational for w, i.e.,
µ′(w) �w w = µ(w). Thus, w ∈ Wµ′ . Because the Decomposition lemma implies µ maps Fµ onto Wµ′ , we
have µ(w) ∈ Fµ, i.e., w is matched also under µ, which is a contradiction to the initial supposition that w is
unmatched under µ. �

The name “rural hospital theorem” is associated with the model of the medical match which we shall
analyze in Chapter 3. It corresponds to the fact that hospitals in remote areas find it difficult to recruit medical
interns. The above theorem implies that in no stable matchings this situation may change.

2.5 Incentives in the marriage market

Now, think of the following procedure, which we call the matching mechanism. There is a clearing house
(e.g. a giant computer). The preferences of all firms and workers are fed into the computer which runs the DA
algorithm, and produces a matching for the marriage market. Clearly, given the preference profiles of firms and
workers, if the computer runs the workers-proposing version, it will produce µW . On the other hand, if it runs
the firms-proposing version, it yields µF . The question we ask is:

Would all market participants state their preferences truthfully?
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The above question is related to the fact that individuals may engage in strategic behavior.

Definition 2.3

A matching mechanism is strategy-proof if for all individuals stating their true preferences is a dominant
strategy.

To understand whether any market participant has incentives for mis-reporting their preferences, consider
the following example.

Example 2.5

Consider the following preference profiles.

PAna = Jorge, Alonso, Ana ;
PCarolina = Alonso, Jorge, Carolina ;
PAlonso = Ana, Carolina, Alonso ;
PJorge = Carolina, Ana, Jorge.
If we run the workers-proposing version of the DA algorithm, then it yields the workers-optimal stable
matching in that µW (Ana)=Alonso and µW (Carolina)=Jorge. Now, consider an alternative preference
profile wherein Ana states
P′Ana = Jorge, Ana, Alonso,
with others stating preferences P. In Step 1, Alonso proposes to Ana, and Jorge proposes to Car-
olina. Because Jorge is acceptable for Carolina, she keeps Jorge. However, Alonso is unaccept-
able for Ana, and hence, she rejects Alonso. This produces a provisional matching: µ1(Ana)=Ana,
µ1(Alonso)=Alonso and µ1(Carolina)=Jorge. In Step 2, Alonso proposes to Carolina who is provision-
ally matched with Jorge. Because Alonso�Carolina Jorge, she accepts Alonso. This step produces a
provisional matching: µ2(Ana)=Ana, µ2(Carolina)=Alonso and µ2(Jorge)=Jorge. In Step 3, Jorge pro-
poses to Ana who accepts the proposal. There are no further rejections, and hence, the final matching is
given by µ′(Ana)=Jorge and µ′(Carolina)=Alonso.

Note that matching µ′ is stable under the stated preference profile (P′Ana, PCarolina, PAlonso, PJorge) as the
DA algorithm produces a stable matching [cf. Theorem 2.1]. However, we see that

Jorge=µ′(Ana)�Ana Alonso=µW (Ana),

i.e., by falsifying her true preferences, Ana achieves to hire her most-preferred worker. The above example
presents the stability-incentive tradeoff in the marriage market: it is not incentive compatible for some individ-
uals to falsify their preferences even if the stated preference profile induces a stable matching.

Theorem 2.4

There is no matching mechanism for the marriage market that satisfies the following two properties
simultaneously:

(a) The matching is stable with respect to the reported preference profile.

(b) The mechanism is strategy-proof for all individuals.

An interesting question is whether, in a stable matching mechanism, would an individual on any of the
two sides of the marriage market mis-report their preferences. In Example 2.5, it is easy to see that no worker
has incentives to falsify his preferences. This is in general true for any matching mechanism that uses the DA
algorithm.
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Theorem 2.5

A matching mechanism that uses the Deferred Acceptance algorithm is strategy-proof for the proposing
side (i.e., it is a dominant strategy to state one’s true preferences).

Proof. See Roth and Sotomayor (1990, Chapter 4). �

The proof is a bit involved which uses the so-called Blocking Lemma (see Gale and Sotomayor, 1985).
However, from Example 2.5 one can understand the intuition. The workers-proposing version of DA produces
a stable matching that is the ‘best’ for all workers. It is thus somewhat natural to expect that workers would
state their true preferences (this argument is not that straight forward as it sounds!). By contrast, if the stable
matching is the worst outcome for the firm-side of the market, then it is expected that some firms would be
better-off by falsifying preferences. Note also that the only strategic concern associated with each market
participant in a matching mechanism is to report a preference list, not to name a partner (the clearing house
does the job). It is also worth noting that the above results can be generalized in that there is in fact no stable
matching mechanism (not only the mechanism that uses DA!) wherein reporting true preferences is a dominant
strategy for all market participants (see Roth, 1982a). However, Kojima and Pathak (2009) show that as the
marriage market becomes large (i.e., the number of workers and firms increases), on average, there is a little
possibility of manipulation because in a large market, the average number of stable matchings tend to be low.
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Chapter 3

The college admissions problem

3.1 Preferences

The many-to-one matching model has often been related to real life matching markets wherein a group of
individuals on one side of the market are matched with one individuals on the other side such as matching
of medical intern (workers) to hospitals (firms)—the medical match, matching students (workers) to colleges
(firms)—hence, the name, the college admissions problem, matching workers to firms—job matching, matching
students (workers) to schools (firms)—school choice. We would stick to our firm-worker market in order not to
change notations. In some examples, we would switch to the example of a doctor-hospital market (the notations
will be introduced opportunely). We continue assuming that there is no possibility of bargaining over salaries
between firms and workers, i.e., salaries offered by each firm are fixed. A many-to-one matching market is a
collection of the set of firms, set of workers, capacities of firms (soon to be elaborated), and their preferences
(over the individuals on the other side of the market). Formally,

F := {f1, . . . , fm} is the set of firms;

W := {w1, . . . , wn} is the set of workers.

To start with, we define the preferences of any individual on one side of the market over the individuals on the
other side in a fashion similar to the marriage market. That is, �w represents the preferences over F ∪ {w}
of worker w ∈ W . Likewise, �f represents the preferences over W ∪ {f} of firm f ∈ F . These preference
profiles captures the idea that there are firms unacceptable for a worker, and workers unacceptable for a firm.

A worker, by assumption, can be employed by only one firm, and hence, there is no loss of generality in
representing his preferences by �w or Pw as in the case of one-to-one matching market. However, firms now
can hire more than one worker, and hence, their preferences must be modified. We would assume that a given
firm f ∈ F can hire a maximum of qf workers, which we would call its capacity or quota. In the marriage
market, clearly all firms have the same capacity, qf = 1 for all f ∈ F . Thus, the third ingredient we require the
many-to-one firm-worker market is the capacities of the firms:

q = (q1, . . . , qm) is the vector of capacities of the firms.

Defining firm preferences over a group of workers is not an easy task. However, we shall see that we can
confine interests to a special class of preferences, called responsive preferences, which will make our life easy,
and responsive preferences are a very general representations of preferences. Suppose Ana and Carolina both
have the same capacities, qAna = qCarolina = 2. There are three workers, Alonso, Jorge and Victor. Consider the
following preference profiles of firms:

PAna = Jorge, Alonso, Victor, Ana ;
PCarolina = Alonso, Victor, Jorge, Carolina.

31



Ana must compare between sets workers. Preferences of firm f ∈ F over sets of workers, as opposed to
over individual workers, will be denoted by P#

f or �#
f . Now, consider that Ana is interested in comparing

{Alonso, Jorge} and {Alonso, Victor}. If the preferences over groups of workers are responsive, then Ana
should prefer {Alonso, Jorge} to {Alonso, Victor} because in both groups, Alonso is the common worker, and
Ana strictly prefers Jorge to Victor.

Definition 3.1: Responsive preferences

The strict preference relation (of a firm f ∈ F ), �#
f over sets of workers is responsive to the preference

relation �f over individual workers if we have

W ′ �#
f W ′ ∪ {w′} \ {w} if and only if w′ �f w.

Under responsive preferences, a firm compares two distinct individual workers pertaining to two distinct
groups, and does not care about the rest of the group members. The following example reveals that such
representation is very general.

Example 3.1

Consider firm f and four workers {w1, w2, w3, w4} with Pf = w1, w2, w3, w4, f . First, note that
all workers are acceptable for the firm. Consider first two sets of workers, W ′ = {w1, w3, w4} and
W ′′ = {w1, w2, w4}. These two sets differ by one worker only: both sets have w1 and w4 as common
workers; however, W ′ has w3 as opposed to w2 in W ′′. If preferences over groups are responsive to
preferences over individuals, then it is sufficient to see how firm f ranks w3 and w2. Because w2 �f w3,
we must have W ′′ �#

f W ′.
Now consider the sets {w1, w3} and {w2, w4}. Note that the two sets are entirely different from each
other. Nonetheless, it is possible compare them. Because w1 �f w2, it is the case that {w1, w3} �#

f

{w2, w3}. On the other hand, because w3 �f w4, we have {w2, w3} �#
f {w2, w4}. Therefore, by

transitivity, we have {w1, w3} �#
f {w2, w4}.

Responsive preferences also allow us to compare sets of unequal sizes. Suppose we intend to compare
{w2} with {w1, w3}. Here the capacity of f becomes important. Let qf = 2. We can write {w2} as
{w2, ∅}, i.e., firm f hires only w2, and she has an unfilled vacancy. Because w3 is acceptable for f ,
we have {w2, w3} �#

f {w2, ∅}. On the other hand, w1 �f w2 implies that {w1, w3} �#
f {w2, w3}.

Therefore, by transitivity, we have {w1, w3} �#
f {w2, ∅} = {w2}.

Clearly, we cannot compare {w1, w4} and {w2, w3}. However, this non-comparability does not create
much of a problem in analyzing a many-to-one matching market.

3.2 Many-to-one matching

The crucial difference between the marriage market and the many-to-one matching market is that, in the latter,
each firm is potentially matched to a set (possibly empty) of workers, i.e., the mapping µ assigns to each firm
f ∈ F a subset µ(f) ⊆W of workers. Such mapping is called a correspondence, and not a function (we write
→→ instead of→). Formally,

Definition 3.2: Many-to-one matching

A many-to-one matching is a correspondence µ : F ∪W →→ F ∪W such that (a) µ(f) ⊆ W with
|µ(f)| ≤ qf for all f ∈ F ; (b) µ(w) ∈ F ∪ {w} for all w ∈ W ; and (c) µ(w) = f if and only if
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µ(f) ∈W .

Example 3.2

Consider F = {Ana, Diana} with qAna = qDiana = 2, and W = {Alonso, Alex, Jorge, Victor}. Let
µ(Ana) = {Alonso} and µ(Diana) = {Jorge, Victor}. Moreover, µ(Alex) = Alex, i.e., Alex is not
hired by any firm. Clearly, for each f ∈ F , µ(f) ⊂ W , and for each w ∈ W , µ(w) ∈ F ∪W . Ana has
an unfilled vacancy because |µ(Ana)| < qAna = 2.

3.3 Stability in the college admissions problem

The definition of stable matching is very similar to that of the marriage market; however, we require a minor
modification because each firm can now hire more than one workers. Consider the following example.

Example 3.3: Stability

Let W = {w1, w2, w3, w4} and F = {f1, f2}. The capacities are given by q1 = 2 and q2 = 1. The
preferences are as follows:

Pw1 = f1, f2, w1;
Pw2 = f1, f2, w2;
Pw3 = f1, f2, w3;
Pw4 = f2, f1, w4;
Pf1 = w1, w2, w3, f1, w4;
Pf2 = w1, w3, w2, f2, w4.
First, consider the matching

µ(f1) = {w1, w3} and µ(f2) = {w2, w4}.

Matching µ is not individually rational for firm f2 because there is a worker, w4, unacceptable for this
firm, yet he is in her matched set.
Consider the following matching

µ′(f1) = {w1, w3} and µ′(f2) = {w2}.

The above matching is clearly individually rational for all firms and workers. Moreover, there are no
vacancies left in any firm. However, w2 prefers f1 to f2, and f1 prefers w2 to w3. Therefore, (f1, w2)

is a blocking pair for the matching µ′.
Next, consider the matching

µ′′(w1) = f1, µ′′(w2) = f2 and µ′′(w3) = w3.

Matching µ′′ is wasteful because worker w3 who is acceptable for f1 is unmatched and firm f1 has an
unfilled vacancy, i.e., |µ′′(f1)| < q1.
First, note the difference between no individual rationality and wastefulness. For a firm f , a matching
µ is not individually rational if there is an unacceptable worker is in µ(f). By contrast, a matching µ
is wasteful if a firm f has an unfilled quota, and yet there is a worker unmatched in the market who is
acceptable for firm f . Second, note the subtle difference between wastefulness and pairwise blocking. If
a matching is wasteful (i.e., f1 has an unfilled vacancy, and w3, who is acceptable for f1, is unmatched),
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then (f1, w3) blocks the matching, but no at the expense of an existing worker of firm f1 (as in the case
of pairwise blocking where f1 disposes of w3 in order to hire w2).
Finally, consider the following matching

µ∗(f1) = {w1, w2} and µ∗(f2) = {w3}.

The above matching is individually rational, not blocked by any firm-worker pair, and not wasteful, and
hence, the matching is stable.

Definition 3.3: Stable matching

A many-to-one matching µ is

(a) individually rational if each worker w ∈ W weakly prefers µ(w) (his mate) to w (himself), i.e.,
µ(w) �w w, and for each firm f ∈ F , there is no unacceptable worker in her matched set, i.e.,
there is no w ∈W with w ∈ µ(f) and f �f w;

(b) immune to pairwise blocking, i.e., if there is no (f, w) with w /∈ µ(f) and w′ ∈ µ(f) such that
f �w µ(w) and w �f w′; and

(c) not wasteful, i.e., there is a worker w and a firm f such that w /∈ µ(f) and w and f are mutually
acceptable for each other such that f �w µ(w) and |µ(f)| < qf .

A matching µ is stable if it is individually rational, immune to pairwise blocking and not wasteful.

At this juncture, we must be wondering why the above definition of stability considers only blocking by
firm-worker pairs, and not by firm-workers coalitions wherein each coalition consists of one firm and a subset
of workers if firms are allowed to hire more than one workers apiece. To be more precise, the second part of
Definition 3.3 corresponds to the concept of pairwise stability. When a matching is immune to blocking by
firm-workers coalitions, it is said to be group stable. Following is an intuitive but surprising result.

Proposition 3.1: Group versus pairwise stability

Under responsive preferences of the firms, a many-to-one matching is group stable if and only if it is
(pairwise) stable.

Proof. Proving necessity is trivial. For sufficiency, see Roth and Sotomayor (1990). �

Definition 3.4: Substitutable preferences

Let W ′ and W ′′ be two subsets of W , the set of workers, and denote by Chf (W ), the choice set of firm
f when she faces the set of workers W . Formally, Chf (W ) = W ′ if W ′ �f W ′′ for any W ′′ ⊂ W .
A firm f ’s preferences over set of workers are said to be substitutable if, for any set S that contains
workers w and w′, if w ∈ Chf (S), then w ∈ Chf (S \ {w′}).

In words, if a firm has substitutable preferences, then if its preferred set of workers from S includes w, so
will its preferred set of workers from any subset of S that still includes w. Let us denote the preference relation
of firms that is substitutable by Psf or �sf .

34



Exercise 3.1

Let F = {f1, f2} and W = {w1, w2, w3}, and q1 = 2, q2 = 1. The strict preferences are as follows:

Pw1 = f1, f2, w1;
Pw2 = f1, f2, w2;
Pw3 = f1, f2, w3;
Pf1 = w3, w2, w1, f1;
Psf1 = {w1, w2}, {w1, w3}, {w2, w3}, {w3}, {w2}, {w1}, f1;
Pf2 = w3, f2;
Psf2 = {w3}, f2.
Note that the preferences of firms, (Psf1 , P

s
f2

) are substitutable. However, the preferences are not re-
sponsive to preferences over individual workers, (Pf1 , Pf2) because {w1, w2} �sf1 {w1, w3} but
w3 �f1 w2. Find the group stable matchings with respect to preference profiles (Psf1 , P

s
f2

) and
(Pf1 , Pf2) (in the second case, as if the preferences were responsive). �

3.4 Finding a stable many-to-one matching

A slightly modifies version of the DA algorithm in Chapter ?? induces a stable matching outcome for the college
admissions problem. The modification is necessary because in many-to-one matching firms can hire more than
one workers. The workers-proposing version of DA is the same as that of the marriage market; however, the
firms-proposing version differs. We shall illustrate the differences in terms of the following example.

Example 3.4: Deferred Acceptance algorithm

Let W = {w1, w2, w3} and F = {f1, f2}. The capacities are given by q1 = 2 and q2 = 1. The
preferences are as follows:

Pw1 = f1, f2, w1;
Pw2 = f2, f1, w2;
Pw3 = f2, f1, w3;
Pf1 = w1, w2, w3, f1;
Pf2 = w2, w3, w1, f2.
Now, we consider the two versions of the DA algorithm for the college admissions problem.

Workers-proposing.

Step 1: Each of the three workers proposes to his most-preferred mate: w1 to f1, w2 to f2 and w3 to
f2. Firm f1 receives only offer form a worker who is acceptable to her, and hence, keeps him
provisionally. Firm f2 receives two offers, but can hire only one worker (q2 = 1). So, this firm
keeps w2 because w2 �f2 w3.

Step 2: Worker f2 is the only rejected worker in the previous step. So, she proposes to firm f1 (by whom
she has not been rejected earlier). Firm f1 now has one outstanding offer from w1, and a new
offer from w3, both of whom are acceptable for f1, and f1 can accommodate two workers. Thus,
both workers w1 and w3 are accepted by firm f1.

STOP: There are no further rejections, and hence, the algorithm stops. It produces a final matching
µ(f1) = {w1, w3} and µ(f2) = w2 which is stable.
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Firms-proposing.

Step 1: Each of the two firms proposes to his most-preferred set of workers (according to preference
rankings Pf1 and Pf2 : Because q1 = 2, f1 offers to {w1, w2}. By contrast, f2 proposes only to
w2. Because f2 �w2 f1, worker w2 (who has received two offers) keeps the offer of f2 and rejects
f1. On the other hand, w1 has received an acceptable offer, and hence, keeps it. The provisional
matching is thus, µ1(w1) = f1, µ1(w2) = f2 and µ1(w3) = w3.

Step 2: Firm f1 has an offer rejected, and hence, she makes an offer to two workers, w1 and w3. At this
step, firm f1 must compare the two sets, {w1, w3} and {w1, ∅}. Notice the crucial modification
of the firms-proposing version of the algorithm over that of the marriage market. The provisionally
matched worker of f1, w1 receives a new offer from his provisional mate. Because w3 �f1 f1,
by the responsiveness criterion, {w1, w3} �#

f1
{w1, ∅} ≡ {w1}, and hence, f1 makes an offer

to the set of workers {w1, w3}. For both workers this is an acceptable offer. So, the offers are
accepted.

STOP: There are no further rejections, and hence, the algorithm stops. It produces a final matching
µ(f1) = {w1, w3} and µ(f2) = w2 which is stable.

Proposition 3.1 not only allows us to concentrate on small coalitions (each consisting of one firm and one
worker), but it also asserts that stable matchings can be identified using only firm’s preferences over individual
workers. It immediately establishes a one-to-one correspondence between the college admissions problem and
the marriage market. Consider any firm f in the college admissions problem with capacity q. We can consider
a related marriage market wherein firm f can be thought of as q copies of the same firm: f1, f2, . . . , f q so
that the market participants will be workers and firm positions. The preferences of each firm position will be
described by its preferences P over individual workers. However, individual workers will now be indifferent
among various positions in the same firm. To avoid complexity, let us assume that worker preferences are strict
over many positions in a single firm in that for any worker w ∈ W , we have f1 �w f2 �w . . . �w f q (a
professor in ITAM may prefer an office in the east side to that in the west side) whenever firm f appears to be
on their list of acceptable firms. Moreover, if any worker w preferred firm fi (with capacity qi) to firm fj (with
capacity qj) in the original college admissions problem, then we assume that, in the corresponding marriage
market, this worker prefers all position in fi to those in fj , i.e., f1i �w . . . �w f qii �w f1j �w . . . �w f

qj
j .

With this aforementioned one-to-one correspondence between the two matching problems, we can state the
following result.

Proposition 3.2: (Roth and Sotomayor, 1990)

A matching of the college admissions problem is stable if and only if the corresponding matchings of
the related marriage market are stable.

From the above proposition, it follows that most of the results regarding stable allocations of the marriage
market carry through the college admissions problem. Clearly, the crucial assumption for the college admissions
problem is that firm preferences are responsive. However, there will be dissimilarities between many-to-one
and one-to-one market, which we discuss in the next subsection.

3.5 Incentives in the college admissions problem

We would be interested to analyze stable matching mechanisms for the college admissions problem. We shall
establish that Theorem 2.4 holds true for the college admissions problem, but Theorem 2.5 does not. Consider

36



the following example.

Example 3.5: Misreporting of preferences

Let F = {f1, f2} and W = {w1, w2}. Further, let (q1, q2) = (2, 1). The preferences are as follows
(as a exercise, write down the induced responsive preferences):

Pw1 = f1, f2, w1;
Pw2 = f2, f1, w2;
Pf1 = w2, w1, f1;
Pf2 = w1, w2, f2.
We run the firms-proposing version of DA. In step 1, f1 proposes to {w1, w2} and f2 proposes to w1.
Worker w1 has two offers, out of which he keeps the one from f1. Worker w2 keeps the offer from f1
because it is his most preferred offer. In step 2, firm f2, who has been rejected by w1, makes a proposal
to w2. Because w2 prefers f2 to f1, he rejects f1 and accepts f2. In step 3, f1, who has a vacant position
stays with w1 because she has been rejected by w2 in the previous step. There are no further rejections,
and the algorithm stops. It produces a stable matching, µ(f1) = {w1} and µ(f2) = {w2}.
Now, suppose firm f1 mis-reports her preferences: P′f1 = w2, f1 (with all other preferences being
truthfully reported). The firms-proposing version of DA produces a stable matching µ′(f1) = w2 and
µ′(f2) = w1. Clearly, firm f1 is strictly better-off by falsifying her preferences because, under the true
preferences, Pf1 , she prefers w2 to w1.

It follows from the above example that theorem 2.5 does not hold for the college admissions problem even
if the firms-proposing version of DA leads to firm-optimal stable matching. Surprisingly, this is not the only
way to manipulate the matching outcome in a college admissions problem. Some firms can also lie about their
capacities, which is called manipulation via capacities..

Example 3.6: Manipulation via capacities

Let F = {f1, f2} and W = {w1, w2}. Further, let (q1, q2) = (2, 1). The preferences are as follows:

Pw1 = f1, f2, w1;
Pw2 = f2, f1, w2;
Pf1 = w2, w1, f1;
Pf2 = w1, w2, f2.
The true preferences are the same as in Example 3.6, and hence, the firms-proposing version of DA
produces a stable matching µ(f1) = w1 and µ(f2) = {w2}. Now, suppose firm f1 reports her capacity
to be q′1 = 1. The firms-proposing matching mechanism yields µ′(f1) = w2 and µ′(f2) = w1. Clearly,
firm f1 is strictly better-off under-reporting her capacity because, under the true preferences, Pf1 , she
prefers w2 to w1.

From the above two examples, we see that the equivalence between the college admissions problem and the
marriage market clearly breaks down as far as stable matching mechanisms are concerned—some firms would
either misreport their preferences or they would under-report their capacities.

Proposition 3.3: Manipulation in the college admission problem

Let (W, F, P, q) be a college admissions problem. Then,

(a) The firm-optimal stable matching mechanism is not strategy-proof for all firms (Roth, 1985).

(b) Suppose there are at least two firms and two workers. Then the firm-optimal stable matching
mechanism is not immune to manipulation via capacities (Sönmez, 1997).
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3.6 Application I: The medical match

In this section, we review one of the first applications of market design methods: the assignment of medical
interns into residency programs. To this date, more than 40,000 medical interns are allocated to more than
30,000 residency programs every year in the United States. The assignment is done through a centralized
clearinghouse, known as the National Resident Matching Program (NRMP), or simply known among doctors
as “The Match”. The success of the NRMP in the United States has led to the adoption of similar clearinghouses
in other countries, such as Canada and the United Kingdom.

The history of the NRMP is both an intellectual delight and an example of how economic theory can guide
market design in practice, what Alvin Roth famously calls “economic engineering” (Roth, 2002). First, we will
briefly review its history. The three main lessons to draw are: (i) the importance of stability as a condition for
the survival of an institutional design; (ii) how real-life markets are shaped by a collection of regulations that are
the result of trial-and-error and idiosyncratic factors, and how they can result in desirable institutional designs
at times, but also in market inefficiencies at others; (iii) how economists have a lot to learn from looking closely
at how real-life markets work. Second, we shall study closely the algorithm underlying the original design of
The Match in the 1950s and its relation with the Deferred Acceptance algorithm.

3.6.1 A brief history of unraveling

The system through which medical interns are allocated to medical residency programs in the United States
underwent multiple changes in the 1940s. In 1951, it reached a design which persisted for more than four
decades, until the end of the 1990s. At that time, prompted for calls for reform, a group led by economists
undertook a further redesign of the system.

Until 1945, medical interns were assigned to residency programs in a decentralized fashion. As in typical
entry-level labor markets, interns were free to apply to residency programs, which in turn accepted applications
from the interns of their preferences. Medical residency programs (hospitals) would also seek interns which
they preferred the most and offered them binding agreements to enroll in their programs upon graduation. By
1945, it was clear to the administrators of the Association of American Medical Colleges (AAMC) that the
market suffered from what now economists term unraveling.

Prior to the mid-1940s, hospitals competed in a typical arms race for the best medical interns. The main
way in which this competition took place was through the dates of the binding agreements hospitals offered
students to lock them into their residency programs. By offering early binding agreements to students, hospitals
tried to guarantee high-quality incoming classes. During the first decades of the twentieth century, hospitals
offered binding agreements to students earlier and earlier in their career. Initially, these biding agreements
were signed a few months before students in the senior class graduated. As hospitals started undercutting each
other’s agreements, the dates at which students had to decide which residency program they would enroll upon
graduation became all but absurd. By the mid-1940s, agreements were typically signed up to two years before
graduation from medical schools. This was clearly inefficient. On the one hand, students did not know which
program or specialty they would want to study after graduating. In some cases, they had not even taken the
necessary classes to make up their minds. On the other, the earlier the agreements offered by hospitals to
students, the less the hospitals knew about the quality and aptitudes of the students. Students who appeared to
be very promising after two years of medical school, would turn out to be not so successful by the end of it.
Given these clear inefficiencies, in 1945 the AAMC decided to stop the unraveling by imposing an earliest date
at which medical schools were allowed to disclose student records to hospitals.

At first, fixing the disclosure date served its purpose in that hospitals were not able to lock in students early
on through binding agreements. However, another market inefficiency turned up. Given the chaotic process,
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which to this day consists of both applications and interviews, it was common for hospitals to jump the gun and
offer so-called exploding offers to students. To lock in students, hospitals would make offers to students with
very short deadlines right after the date in which records were released. By forcing a student to decide quickly
on whether or not to enroll in a residency program, a hospital minimized the probability that another hospital,
which the student might prefer, would also made them an offer. Students thus faced tough career decisions.
They could play it safe by accepting an early offer even if it was not from their most preferred hospital, or they
could risk it and decline such offers in the hope that a hospital they preferred more would come up with an offer
later. Either way, students were likely to end up in a less preferred residency program while another program
they liked better had an opening for them. Therefore, it became more and more common for students to back
out from offers they had previously accepted, which naturally hospitals found annoying.

Between 1945 and 1951, the AAMC implemented a series of regulations which aimed at solving this
problem. They largely consisted on regulating the time at which offers could be made, and the time which they
should give interns to make up their minds. After some (unsuccessful) experimentation with different sorts of
rules, in 1951, the AAMC resolved to fully centralize the process into a matching clearinghouse. Under the new
procedure, students and hospitals would communicate and exchange information as before via applications and
interviews, but then both would submit rank-ordered lists of their preferences over the hospitals, and applicants
they were considering. The final allocation of interns to residency programs would be decided through a
matching algorithm.

In 1951, the AAMC performed a trial-run of the new procedure. It was not meant to actually match students
and hospitals, but as a basis for the next year. Despite some caveats, the trial-run was deemed successful, and
the AAMC decided to fully implement the matching mechanism with a few tweaks the following year. A key
aspect of the market that allowed for this type of organizations was that the salaries and responsibilities for
medical interns were mostly standard across all programs and not an important part of contract negotiations.
Importantly, the matching procedure was to be voluntary. Students were free to opt out and contract directly
with hospitals. The matching algorithm, which was used until the end of the 1990s, is known as the NRMP
algorithm (for National Resident Matching Program), which used to be the name of the program at the time.

In a remarkable discovery of the economics discipline, some decades later it was noted that the NRMP and
the Gale-Shapley algorithms, though written distinctly, were actually equivalent. Notably, this was unknown
to both the administrators of the NRMP, and to David Gale and Lloyd Shapley until the 1970s.1 The NRMP
algorithm was used until the late 1990s. At the time, the mechanism faced strong opposition from students,
who claimed, amongst other things, that the mechanism was open to gaming. Furthermore, as years went by,
it became more common for couples of medical interns to look for medical residency programs that were geo-
graphically close to one another. For this reason, a group of economists led by Alvin Roth undertook a partial
redesign of the matching algorithm in the mid-1990s. Though the main aspects of the deferred acceptance
algorithm remained in place to date, the redesign focused on (i) changing the algorithm from the programs-
proposing to the applicants-proposing version of the DA algorithm, and (ii) the way in which the algorithm
deals with couples who have interdependent preferences.

3.6.2 The NRMP algorithm

We now study formally the NRMP algorithm, as well as the algorithm used in the trial run of 1951. There are a
finite set of hospitals, H = {h1, . . . , hm} and a finite set of interns or residents (students), S = {s1, . . . , sn}.
Generic hospitals will be denoted by h, hi, etc. and generic students will be denoted by s, sj etc. For simplicity,
we restrict attention to the case in which every hospital has exactly one position, i.e., qi = 1 for all i. As
discussed above, the algorithm was modified to incorporate several complaints brought up by students after

1According to anecdotal evidence reported by Roth (1984), it was until 1976 when David Gale first heard of the labor market for
medical interns, and sent a copy of the Gale and Shapley (1962) paper to an administrator of the NRMP.
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the trial run. As we shall see below, the main concern was that the trial run algorithm was not strategy-proof
for students. But not only this, it was also not a stable mechanism. After modifying the algorithm, AAMC
administrators came up with the NRMP algorithm, which always generates a stable matching. At the time, it
was mistakenly claimed that was also strategy-proof for students. Remarkably, this appears to have remained
unknown for several decades until economists studied the algorithm formally.

The trial run algorithm of 1951. Students submit a rank ordering of hospitals. Hospitals submit a ranking
dividing student into five groups: rank 1, rank 2, . . . , rank 5; each group containing as many students as the
number of positions the hospital is offering. The algorithm proceeds in consecutive stages as follows.

Step 1.1: Interns and hospitals are matched if they gave each other a rank of 1.

Step 1.2: The remaining students and hospitals are matched if the student has ranked the hospital 1 and the hospital
has ranked the student 2.

Step 2.1: Among the remaining students and hospitals, match students who ranked hospitals 2, and hospitals who
ranked students 1.

Step 2.2: The remaining students and hospitals are matched if the student has ranked the hospital 2 and the hospital
has ranked the student 2.
...

Proposition 3.4

The NRMP trial run algorithm is not stable, nor strategy-proof for students.

Proof. Consider the following example with H = {h1, h2, h3} and S = {s1, s2, s3}. The preferences are
given as follows:

Ps1 = h1, h2, h3, s1; Ph1 = s2, s3, s1, h1;
Ps2 = h2, h3, h1, s2; Ph2 = s1, s2, s3, h2;
Ps3 = h1, h3, h2, s3; Ph3 = s3, s2, s1, h3.

Suppose that everyone submits their true preferences to the NRMP trial run algorithm. In Step 1.1, there are
no matches. No one is ranked 1 by whom they ranked first. At Step 1.2, it matches (s2, h2) and (s3, h1). And,
eventually at Step 3.3, it also matches (s1, h3). So, final matching is µ(s1) = h3, µ(s2) = h2 and µ(s3) = h1.

First, note that this matching is not stable. Because h2 �s1 h3 = µ(s1) and s1 �h2 s2 = µ(h2), (s1, h2)

is a blocking pair. Second, note that if s1 had reported P′s1 = h2, h1, h3, s1, then in Step 1.1 of the algorithm,
s1 and h2 would have been matched to each other. Because h2 �s1 h3 = µ(s1) (under his true preference
ordering), s1 would have gained by misreporting. �

The NRMP algorithm. Now, we turn to the NRMP algorithm, which was first used in 1952, and remained
without any change until its redesign in the mid 1990s. Instead of writing down the algorithm, we present its
main ingredients. (source: NRMP webpage):

• How does it work? The matching algorithm is “applicant-proposing” meaning it attempts to place an
applicant (Applicant A) into the program indicated as most preferred on Applicant A’s rank order list
(ROL). If Applicant A cannot be matched to this first choice program (because the program doesn’t also
prefer Applicant A), an attempt is then made to place Applicant A into the second choice program, and
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so on, until Applicant A obtains a tentative match, or all of Applicant A’s choices have been exhausted
(meaning Applicant A cannot be tentatively matched to any program on the ROL).

• What does tentative match mean? ApplicantA will be tentatively matched to a program if the program
also ranks Applicant A on its rank order list, and either:

– the program has an unfilled position (making room for the tentative match to Applicant A) or

– the program is filled but Applicant A is more preferred by the program than another applicant
(Applicant B) already tentatively matched. In such a case, Applicant B is “bumped” from the
tentative match with the program to make room for Applicant A.

• What happens to an applicant whose tentative match is “bumped”? The matching algorithm will
return to Applicant B’s rank order list and attempt to tentatively match Applicant B at the next most
preferred position on Applicant B’s list. The attempt to find another tentative match for Applicant B is
done in the same manner as outlined for Applicant A.

• When does a tentative match become final? When all applicants’ rank order lists have been considered,
the matching algorithm is complete and all tentative matches become final and binding for training.

Example 3.7: DA versus NRMP

Watch the How the NRMP Matching Algorithm Works video. The following figure describes the rank
order lists of all market participants.

We first run the applicants-proposing DA algorithm (same as the workers-proposing version in Example
3.4). In Step 1, Latha proposes to Mercy, and all interns but Latha propose to City. Darrius and Arthur
are tentatively matched to City because Sunny and Joseph are lower-ranked than Darrius and Arthur
by City, and Latha is not ranked by Mercy. In Step 2, the previously rejected interns propose to their
second-ranked programs: Sunny to Mercy, Joseph to General, and Latha to City. Sunny is rejected
again because Mercy did not rank her. Joseph is acceptable for General, and hence, they are tentatively
matched. Latha is rejected by City because both City’s tentative matches, Darrius and Arthur are higher-
ranked than Latha. In Step 3, Sunny cannot make further proposals because she had exhausted her ROL,
and hence, stays unmatched. Latha proposes to her third-ranked program, General. General still has one
vacancy, and Latha is ranked by General. There are no more rejections, and the algorithm stops. So, the
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applicant-proposing DA algorithm produces the following final match:

µ(CITY) = {Darrius, Arthur}, µ(GENERAL) = {Joseph, Latha},
µ(MERCY) = {∅, ∅}, µ(Sunny) = Sunny.

Note that the DA is different from the NRMP algorithm (as described in the video). However, the NRMP
algorithm produces the same stable allocation. In fact, both algorithms are equivalent.

Between 1952 and mid 1990s, the NRMP algorithm (an algorithm that allows voluntary participation) used
an equivalent version of hospitals-proposing DA algorithm, which produced hospital-optimal stable matching.
However, we have seen in Example 3.5 that this matching mechanism may not be strategy-proof for residency
programs. Moreover, the presence of applicant couples made the allocations less likely to be stable, and couples
tended more and more to opt out from the residency matching program. Following the suggestions of Roth and
Peranson (1999), the current NRMP algorithm has been modified to be applicants-proposing which can also
accommodate couples. Two important aspects of the NRMP is that participation is not free (consult the current
NRMP fee structure) and once a match occurs, given the ROLs, the contracts are binding.

The couples market. If applicants decide to participate in the couples market, as opposed to the singles
market, NRMP treat a couple’s primary ROLs as paired ranks (see how couples’ ROLs are paired). The rule
is the following. Suppose David and Erin decide to participate in the residency matching program as a couple
(any two participants such as married couples, friends, siblings can participate in the couples market). In their
paired rank order list suppose they have ranked (General, City) as their paired options (as both programs are in
San . On the other hand, suppose City has ranked Erin, but General has not ranked David. If this proposal pops
up at some stage of the algorithm, then Erin cannot be tentatively matched even if she is an acceptable intern
for City. So, apart from the couples fee, participation in the couples market bears the risk of being unmatched.

Example 3.8: Couples in NRMP

Watch how NRMP algorithm with couples works.

3.7 Application II: School choice

In this section we study the problem of assigning public school seats to students. Traditionally, children are
assigned to schools according to where they live. However, in several parts of the world this has been deemed
unfair in recent years. While wealthier parents can decide to move to a neighborhood with good schools, parents
without such means had no choice of school, and had to send their children to schools assigned to them by the
district. Today, several states in the United States offer inter-district and intra-district school choice programs.
We now study the problem of matching students to schools as a formal two-sided matching problem.

3.7.1 Priorities as opposed to preferences

On the outset, school choice problem is a many-to-one matching problem that looks very similar to the medical
match problem. However, there are subtle difference—unlike hospitals, schools are assumed not to have pref-
erences over students. Public schools are treated merely as object who provide educational services. Although
schools do not have preferences over students, they nevertheless rank them. A school may give priority to a
student whose siblings are already students of that school. Schools may also give priorities to specific social
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groups. So, in order to distinguish these rankings over students from the concept of preferences, we shall call
such rankings priorities (or priority lists). The main difference between priorities and preferences is that any
student is acceptable for a school as long as it has enough capacity to accommodate them.

At this juncture, we are required to impose restrictions on schools’ priority lists which is usually a ranking
of individual students. However, each school can enroll many student (it has capacity greater than 1). So, we
shall assume, similar to the college admission problem, that priorities are responsive. It is in the following
sense. For a given school, ranking over any two students who are not yet enrolled is not affected by the students
already enrolled in the school. On the other hand, we continue assuming that the preferences of students over
schools are strict orders.

3.7.2 Many-to-one matching for school choice

A school choice problem consists of a set of students, I = {i1, . . . , in}, a set of schools, S = {s1, . . . , sm}
with their respective capacities, q = (q1, . . . , qm), the profile of strict preferences of the students, Pi∈I or
�i∈I , and the priorities of the schools over students, πs∈S .

Definition 3.5: Matching in school choice

A many-to-one matching for the school choice problem is a correspondence µ : I ∪ S →→ I ∪ S such
that (a) µ(s) ⊆ I with |µ(s)| ≤ qs for all s ∈ S; (b) µ(i) ∈ S ∪{i} for all i ∈ I; and (c) µ(i) = s if and
only if µ(s) ∈ I .

The interpretation of the above definition is similar to that [cf. Definition 3.2] of the college admission
problem.

3.7.3 Stability and efficiency

The concept of stability in school choice is also very similar to that in the college admission problem.

Definition 3.6: Stability in school choice

Consider a matching µ for the school choice problem. The matching

(a) is individually rational if each student i ∈ I weakly prefers µ(i) to being unmatched, i.e., µ(i) �i
i;

(b) is not wasteful, i.e., if there is a student i and a school s such that i /∈ µ(s) and s �i µ(i), then it
must be that |µ(s)| = qs. In words, if a student prefers a school to their current assignment, then
that school must have exhausted its capacity;

(c) eliminates justified envy, i.e., for all i, i′ ∈ I with µ(i′) = s ∈ S, s �i µ(i) implies i′πsi. In
words, if a student prefers a school to their assignment, then all students enrolled to that school
must have higher priorities than that student.

A matching µ is stable if it is individually rational, not wasteful and eliminates justified envy.

In condition (a), a student being unmatched can be interpreted as the student prefers to opt out of the public
school system, and go to a private school. Condition (c) is equivalent to no-blocking by a student-college pair.
If a school s has an enrolled student i′ who is lower-ranked than a not-enrolled student i who prefers school s
to their match, then the pair (i, s) blocks the current matching.
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Definition 3.7: Efficient matching

Given a preference profile (Pi)i∈I , a matching µ is efficient if there is no other matching µ′ such that
µ′(i) �i µ(i) for all i ∈ I and µ(j) �j µ(j) for at least one j ∈ I .

A crucial point to note is that efficiency of a matching is defined only in terms of the preference orderings
of the students. Schools having priorities, instead of preferences, means that a school do not derive more utility
from enrolling one student over the other although one of them may have higher priority over the other.

Example 3.9: Stability versus efficiency

Consider a school choice problem with I = {i1, i2, i3, i4} and S = {s1, s2, s3} with capacities
(q1, q2, q3) = (1, 2, 1). The preferences of the students are given by

Pi1 = s2, s1, s3, i1;
Pi2 = s1, s2, s3, i2;
Pi3 = s1, s2, s3, i3;
Pi4 = s2, s3, s1, i4.

On the other hand, schools’ priority lists are given by

πs1 = i1, i2, i3, i4;
πs2 = i3, i4, i1, i2;
πs3 = i4, i1, i2, i3.

Consider the following two matching outcomes:

µ : µ(s1) = i1, µ(s2) = {i3, i4}, µ(s3) = i2,

µ′ : µ(s1) = i3, µ(s2) = {i1, i4}, µ(s3) = i2, .

(a) µ is not efficient because i1 and i3 strictly prefers µ′ to µ, whereas i2 and i4 are indifferent
between µ and µ′.

(b) µ′ is efficient. In µ′, i1, i3 and i4 get their top choices. So to verify the efficiency of µ′, we have
to guarantee that there is no other matching so that i2 prefers this matching to µ′. In a different
matching, suppose that we match i2 to s1. Then, we have to un-assign i3 from s1, and reassign
them to some other school. Because s1 is i3’s top choice, they would be strictly worse off by any
such re-match. Same is true if we un-assign either i1 or i4 from school s2. Thus, there is no way
to make i2 better off without making one of the other three students worse off.

(c) µ is stable. Note that µ is individually rational and not wasteful. So, we have to verify whether µ
eliminates justified envy. Because i4 is assigned to their top choice, only i1, i2 and i3 would like
to be enrolled in another school. First, i2 would like to go to s2, their top choice. However, both
i3 and i4 have higher priority over i1 in school s2, and they are already assigned to s2. Similar
arguments apply to i2 and i3.

(d) µ′ is not stable. Note first that µ′ is individually rational and non-wasteful. So, if µ′ is not stable,
it must be the case that the matching cannot eliminate justified envy. Students i1, i3 and i4 are
enrolled into their top choices. So, if there is a blocking pair, it must involve student i2. Note that
s1, which is the top choice of i2, is matched with i3. However, for s1, i2 is ranked higher than
i3. So, i2 and s1 form a blocking pair, and hence, µ′ is not stable. Now, we can ask the question
whether (i2, s2) can form a blocking pair. In this case, s2 must get rid of either i1 or i4. This is
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to say s2 has higher priority for {i2, i4} than {i1, i4} or for {i1, i2} than {i1, i4}. But this is not
the case with responsive priorities because both i1 and i4 are ranked above i2 by school s2.

There may be school choice outcomes that are both stable and efficient. However, they can be reached under
very restrictive and demanding assumptions, e.g. schools should have very similar priority lists. In general, the
trade-off between stability and efficiency would exists in the simple school choice model.

3.7.4 Competing algorithms

We would analyze here two algorithms for school choice—the first one is the Deferred Acceptance algorithm,
and the second one known as the Immediate Acceptance algorithm (IA). In Chapter 4 we shall analyze another
algorithm, called the Top Trading Cycle algorithm. The DA and IA for school choice are very similar with a
little difference which we would discuss opportunely. One important point to make is that, unlike the college
admission problem, we would consider only the students-proposing versions of the two algorithms. Schools
per se do not derive any utility out of enrolling students although they have priorities over students. So, a
schools-proposing version is not so interesting to consider.

The Deferred Acceptance algorithm for school choice. The DA for school choice works as follows.

Step 1: Each student i applies to the school that is ranked first in their preference list (if there is no such school,
then i becomes unassigned). Each school s assigns students, one at a time, up to its capacity from the
students applying to s, following the priority order πs. That is, school s first admits the student with
the highest priority, then the student with the second-highest priority, and so on until either school s
has enrolled qs students or it has enrolled all the students who applied to s. The remaining students are
rejected.

...

Step k: Each student rejected in the previous step applies to the most preferred school among those they have not
yet proposed to and that are acceptable (if there is no such school, then the student becomes unassigned).
Each school receiving applications considers the set of students it accepted at the previous step together
with the set of new applicants. From this larger set, the school accepts students up to its capacity, one at
a time, following its priority order. The remaining students are rejected.

...

STOP: The algorithm halts when no student is rejected or all schools have filled their capacities. Any other
student remains unassigned.

The above algorithm yields the student-optimal stable matching. From Theorem 2.5, it follows that a mecha-
nism that uses school choice DA is strategy-proof (for the students, the proposing side). Moreover, Example
3.9 reveals that the matching produced by DA is not necessarily efficient.

Exercise 3.2: DA for school choice

Consider a school choice problem with I = {Ana, Belen, Carlos, Daniel} and S = {a, b, c} with
capacities (qa, qb, qc) = (2, 1, 1). The preferences of the students are given by

PAna = a, b, c, Ana;
PBelen = a, b, c, Belen;
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PCarlos = b, a, c,Carlos;
PDaniel = a, c, b,Daniel.

On the other hand, schools’ priority lists are given by

πa = Ana, Carlos, Daniel, Belen;
πb = Ana, Belen, Daniel, Carlos;
πc = Belen, Carlos, Daniel, Ana.

Show that DA for school choice yields matching µ wherein µ(a) = {Ana, Carlos}, µ(b) = {Belen}
and µ(c) = {Daniel} is the student-optimal stable matching, but it is not efficient. Can you suggest an
efficient matching?

The Immediate Acceptance algorithm. The difference between DA and IA is that in IA, there are no tem-
porary assignments, i.e., acceptances are immediate, and not deferred till the end. Refer to Haeringer (2017, p.
248-249) to see how IA works.

Example 3.10: IA for school choice

Consider the same set up as in Exercise 3.2 and run IA. In Step 1, Ana, Belen, and Daniel propose to
school a. School a can admit at most two students, so it starts accepting the students who applied to it
following the order given by its priority order. Ana is the top priority student, so she is accepted. The
next student with the highest priority and is applying to a is Daniel. So Daniel is accepted, and Belen
is rejected because school a has filled its capacity with Ana and Daniel. The other student, Carlos,
proposes to school b. He is the only applicant, so he is accepted. So at the end of the first step, Ana and
Daniel are accepted at school a, Carlos is accepted at school b, and Belen is not assigned to any school.

In Step 2, Belen is the rejected student. She applies to school b. But b already filled its capacity
in Step 1. This means that in Step 2 the remaining capacity of school b is 0, and hence, it can no longer
accept any additional student. So, Belen is rejected.

In Step 3, Belen is the only rejected student from the previous step. She applies to her most
preferred school among those she has not yet proposed, i.e., she applies to school c. She is the only
applicant, so she is accepted. No student is rejected, so the algorithm halts.

The final matching µ′ produced by IA is given by µ′(a) = {Ana, Daniel}, µ′(b) = {Carlos}
and µ′(c) = {Belen}. Notice that µ′ is not stable. Observe that the student-school pair (Belen, b) forms
a blocking pair: Belen prefers b to her match (school c), and school c gives Belen a higher priority
than Carlos (who is enrolled in it). However, µ′ is efficient. To see this, observe that Ana, Carlos and
Daniel are assigned to their top choices. Only, Belen got her third choice. So, if we want to make her
better off by assigning her to school a, then either Ana or Daniel must be un-assigned from school a
and be reassigned to some other school. But in the reassignment, one of them is necessarily worse off.
Similar argument goes through is we try to assign Belen to school b, which would make Carlos worse off.

However, the matching mechanism that uses A is not strategy-proof. Suppose Belen reports
P′Belen = b, a, c, Belen. In Step 1, Ana and Daniel propose to school a, and Belen and Carlos
propose to school b. Because school a has two seats, both Ana and Daniel, the only two applicants
to this school, are accepted by a. On the other hand, school b has only one seat, and Belen is
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ranked higher than Carlos by b. Hence, Belen is accepted and Carlos is rejected by b. In Step 2,
Carlos applies to school a which had already exhausted its capacity. So, school a rejects Carlos. In
Step 3, Carlos applies to school c; being the only applicant there he is accepted at school c. The
final match is given by µ′′(a) = {Ana, Daniel}, µ′′(b) = Belen and µ′′(c) = Carlos. Clearly,
b = µ′′(Belen) �Belen µ

′(Belen) = c. Therefore, the mechanism is not strategy-proof for Belen.

To summarize, the Deferred Acceptance algorithm for school choice yields the student-optimal stable
matching, and the associated matching mechanism is strategy-proof. However, the matching may not be ef-
ficient. By contrast, the Immediate acceptance algorithm produces an efficient matching, but it may yield
an unstable matching. Moreover, the associated mechanism may not be strategy-proof. In fact, we have the
following general result.

Proposition 3.5: (Kesten, 2010)

There is no strategy-proof mechanism that selects the efficient and stable matching whenever it exists.

As we have discussed earlier that a matching for the school choice problem may be both stable and efficient.
However, if such matching exists, there is no mechanism that can truthfully implement this assignment. The
intuition lies in the discussion preceding Proposition 3.5. It is worth noting that the Boston mechanism that
assigns K-12 students to Boston public schools has been using the Immediate Acceptance algorithm. The
theory of school choice matching is due to the seminal paper by Abdulkadiroğlu and Sönmez (2003).
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Chapter 4

The housing market

As opposed to the marriage market and the college admission problem, object allocation problem is a two-sided
matching market with one-sided preferences. Think of firms as machines to produce a goods in our firm-worker
market. Workers have preference orderings over machines, but machines (objects) do not have preferences over
workers. Other examples include allocation of houses to individuals (the house allocation problem), allocation
of vaccines and medical equipments (e.g. ventilators) to people, kidney transplants, etc. We assume that there
is a finite set of agents or individuals, I and a finite set of objects (houses), H . For simplicity, we assume
that there are as many houses as individuals, i.e., |I| = |H| = n. Workers have strict preferences over firms,
denoted by (Pi)i∈I or (�i)i∈I . A housing market will be denoted byM = (H, I, (�i)i∈I). An allocation of
the marketM is a matching that assigns a house to each individual. Formally,

Definition 4.1: Matching

A matching is a function µ : I ∪H → I ∪H such that (a) for each individual i ∈ I , µ(i) ∈ H ∪ {i},
and for each object h ∈ H , µ(h) ∈ I ∪∅; and (b) µ(i) = h if and only if µ(h) = i.

A matching specifies which agent is assigned to which house. If µ(i) = h, then house h is assigned to
agent i, which is equivalent to µ(h) = i. Note that we allow for agents to remain unmatched by matching them
with themselves, and for houses to remain unassigned, which we specify by µ(h) = ∅.

4.1 House allocation with public endowments

We start with the simplest possible model of object allocation wherein no individual owns a house, i.e., each
individual has zero endowment, and someone (say, the government) outside the set I owns all the houses in H .
Such problem will be called house allocation with public endowments. The first “desirable” property we would
like to impose on a matching allocation (or simply allocation) is Pareto efficiency.

Definition 4.2: Pareto efficiency

Given a preference profile (Pi)i∈I , a matching µ Pareto efficient if there is no other matching µ′ such
that µ′(i) �i µ(i) for all i ∈ I and µ(j) �j µ(j) for at least one j ∈ I .

Consider the following example
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Example 4.1

Let I = {Ana, Belen, Carlos, David} and H = {a, b, c, d}. The preferences are given by

PAna = b, c, d, a;
PBelen = a, b, c, d;
PCarlos = a, c, d, b;
PDavid = a, d, b, c.
That is to say, Ana prefers house b over all the houses, followed by house c, house d, etc. Consider the
matching µ given by:

µ(Ana) = d, µ(Belen) = a, µ(Carlos) = c, µ(David) = b.

Is matching µ Pareto efficient? The answer is no because their is a matching µ′, wherein

µ′(Ana) = b, µ′(Belen) = a, µ′(Carlos) = c, µ′(David) = d,

which Pareto dominates µ. In µ′, Ana and David simply trade their houses, and are strictly better off. Is
matching µ′ Pareto efficient?

So, the question we ask now is whether a Pareto efficient matching exists in house-allocation problems,
and, if so, how to find them.

The Serial Dictatorship algorithm. The Serial Dictatorship (SD) algorithm, which is a priority algorithm,
is one of the simplest algorithms to find desirable outcomes in the house allocation problem.

Step 0: Fix a priority order of individuals, π. Formally, π : {1, . . . , n} → I that assigns a natural num-
ber to each individual form a sequence. That is, in a given order π, π(k) is the individual in the k-th
position in the sequence. For example, given I = {Ana, Belen, Carlos, David}, a priority order is
π = (Ana, David, Carlos, Belen). Another order is given by π′ = (David, Belen, Carlos, Ana). How
many priority orders are there?

Step 1: All houses are available. Assign agent π(1) to their top choice, and remove both this agent and their
allocation from the market.

Step 2: Assign agent π(2) to their top choice from the set of available houses. Remove both this agent and their
allocation from the market.

...

Step k: Assign agent π(k) to their top choice from the set of available houses. Remove both this agent and their
allocation from the market.

...

STOP: The algorithm stops when every agent has been assigned to a house or there are no more available houses.

The SD algorithm assigns the agent with the highest priority to their most favorite house, the agent with the
second-highest priority to their most favorite house among the remaining ones, and so on, until there is no
house left or all agents have been assigned to a house. Clearly, the algorithm is not fair in that it favors agents
with higher priority. A common practice to circumvent this issue is to assign priorities randomly. Nonetheless,
the most attractive feature of SD is that it always generates a matching that is Pareto efficient. And not only
that, it actually characterizes the set of Pareto efficient assignments.

50



Proposition 4.1: Serial dictatorship is Pareto efficient

Let µ be a matching of the house allocation problem.

(a) If µ is an outcome of the Serial Dictatorship algorithm under a given priority order π, then µ is
Pareto efficient under any such priority order;

(b) If µ is Pareto efficient, then there is a priority order π such that µ is a matching generated by the
Serial Dictatorship algorithm under π.

Proof. First we show that the outcome of SD is Pareto efficient. Proceed by contradiction. Let µ be an
outcome of SD, and assume there exists µ′ that Pareto dominates µ. Then, there is a non-empty set I ′ = {i ∈
I | µ′(i) �i µ(i)} ⊂ I . Let j (say, Belen) be the individual in I ′ who gets to choose first under π, and let
µ(j) = h and µ′(j) = h′. Then, each agent who has chosen before j was assigned the same object under both
µ and µ′ (otherwise, Belen would not be the first individual to be assigned different objects under µ and µ′).
This means that h′ was available to Belen, yet she had picked h. This contradicts the fact that h′ �j h (if this
were the case, why had not she chosen h′ or some house that is more preferred to h′?). Because the choice of
π has been arbitrary, this completes the proof of part (a).

We now prove part (b). Let µ be a Pareto efficient matching. To show that µ is an outcome of the SD for
some priority order π, we first claim that under µ, some agent must be getting their top choice. Suppose not.
Then, let each agent point at their top choice, and let each house point at its owner under µ. This must lead
to a cycle because the number of agents is finite (why?). Move every agent in the cycle to the house they are
pointing at. This new allocation Pareto dominates µ, which is a contradiction. Hence, order the m ≥ 1 agents
who get their top choices under µ as π(1), π(2), . . . , π(m). Repeat the same argument with the remaining
n − m agents and the houses that have not been assigned to any of the first m agents. Continue until every
agent has been assigned a priority order. Note that, by construction, µ is the resulting matching of the SD under
π. �

4.2 House allocation with private endowments

Now think of the housing market wherein each house is owned by some agent, and the house allocation problem
is a simple exchange of houses between any pair of owners. Formally, a housing market is represented by
the tuple M = (H, I, (ωi)i∈I , (�i)i∈I) where ωi is the endowment of individual i ∈ I . This looks like
an Edgeworth box economy with each market participant possessing only one indivisible good. The market
works in the following way. All agents gather in the ‘marketplace’ with the objects they own, and each one
of them places their endowment on a huge table. At the end of the day, each one picks (the choice is a
function of their preferences) one object (which may be their endowment), which is their allocation. So, how
a voluntary participation can be mediated so that everybody is “happy” after the trades? Consider the two
following examples.

Example 4.2: A matching that is not individually rational

Let I = {Ana, Belen, Carlos, David} and H = {a, b, c, d}. The endowments and preferences are
given by

(ωAna, ωBelen, ωCarlos, ωDavid) = (a, b, c, d);
PAna = b, c, d, a;
PBelen = a, b, c, d;
PCarlos = a, c, d, b;
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PDavid = a, d, b, c.

The Serial Dictatorship may not always give a sensible allocation. Let us fix π =(Carlos, Ana,
David, Belen) and run SD. This will produce µ(Ana) = b, µ(Belen) = c, µ(Carlos) = a and
µ(David) = d. By Proposition 4.1, we know that µ is Pareto efficient. However, Belen does not have
incentives to participate in the market because µ made her worse off. She would rather stay with her
endowment.

Example 4.3: A matching that is blocked by a coalition

Let I = {Ana, Belen, Carlos} and H = {a, b, c}. The endowments and preferences are given by

(ωAna, ωBelen, ωCarlos) = (a, b, c);
PAna = b, c, a;
PBelen = a, b, c;
PCarlos = a, b, c.
Let π =(Carlos, Belen, Ana) and run SD. This will produce µ(Ana) = c, µ(Belen) = b and µ(Carlos) =

a. Clearly, µ is Pareto efficient, and assigns to each agent a house they prefer at least as much as the
one they initially own. However, note that Ana and Belen would be better off by not participating in the
mechanism and trading their endowments amongst themselves. That is, Ana would rather have house b
(in exchange for a) than getting c in µ, and Belen would rather have house a (in exchange for b) than
keeping her endowment, b in µ.

In Example 4.2, Belen would like not to participate in the market because the (Pareto efficient) assignment
µ is not individually rational for her. On the other hand, in Example 4.3, Ana and Belen would be better off by
not participating, i.e., they would block µ even if it is Pareto efficient.

Individual rationality and the core. Individual rationality captures the idea of property rights. A matching
is individually rational if it assigns to each agent a house that they find at least as good as the one they already
own.

Definition 4.3: Individual rationality

Let µ be a matching of the housing market, (H, I, (�i)i∈I). The matching µ is individually rational if
µ(i) �i ωi for every i ∈ I

The reason is the same as in an Edgeworth box economy. The notion of Pareto efficiency does not take
agents’ endowments into account, whereas the concept of individual rationality does. Notice that any Pareto
efficient allocation is trivially individually rational in the housing market with public endowments.

As indicated by Example 4.3, individual rationality however does not guarantee that groups of individuals
would want to participate in an exchange. The notion of blocking is the similar to that in the college admission
problem with the difference that blocking coalitions are formed by the individuals on the same side of the
market. The notion of blocking by coalitions is somewhat vacuous because no one initially owns anything.

Definition 4.4: Core allocation

Let µ be a matching of the housing market, (H, I, (�i)i∈I). The matching µ is blocked by a coalition of
agents C ⊆ I if there exists another matching µ′ such that µ′(i) �i µ(i) for all i ∈ C and µ′(i) �i µ(i)

for some i ∈ C with the property that for each i ∈ C, µ′(i) = ωj for some j ∈ C and j 6= i. The
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matching µ is a core allocation if it is not blocked by any coalitions of agents.

Proposition 4.2

Every matching that is a core allocation is individually rational and Pareto efficient.

Proof. Trivial. If a core allocation is not individually rational, it is blocked by singleton coalitions, i.e.,
C = {i} for some i ∈ I . If it is not Pareto efficient, then it is blocked by the grand coalition, i.e., C = I . �

Proposition 4.2 above shows that the property of being in the core implies individual rationality and Pareto
efficiency. It is a stronger notion in the sense that the converse is not true (see Example 4.3). Intuitively, the
core is an appealing notion when thinking of decentralized exchanges. That is, if agents were to exchange
houses on their own, it is natural to think that the resulting matching would lie in the core. Otherwise, the
agents in a blocking coalition would further exchange their houses to improve upon their final allocations. This
line of reasoning brings up the question of whether the core is nonempty. That is, if left to their own devices
to exchange houses, would agents be able to “converge” to an allocation in which no further exchanges are
possible? We shall show that in a house allocation problem the we can find a core allocation by an algorithm,
called the Top Trading Cycle algorithm (TTC) which was first proposed by David Gale. Prior to its introduction,
let us refresh our knowledge of graph theory.1

Some concepts of graph theory. Let us start with discussing what is actually meant by a network. To
this end, we first concentrate on some basic formal concepts and notations from graph theory. Networks are
mathematically known as graphs. In its simplest form, a graph is a collection of vertices that can be connected
to each other by means of edges. In particular, each edge of graph joins exactly two vertices. Using a formal
notation, a graph is defined as follows.

Definition 4.5: Graphs

A graph G consists of a collection of vertices V , and a collection of edges E, for which we write
G = (V, E). Each edge e ∈ E is said to join two vertices, which are called its end points. If e joins
i, j ∈ V , we write e = 〈i, j〉. Vertex i and j in this case are said to be adjacent. Edge e is said to be
incident with vertices i and j, respectively.

In a graph G, two vertices could be connected by one or more edges. An edge has been represented by
an unordered pair of vertices. However, having no ordering is not always convenient. Consider the following
examples:

• Suppose we want to model a street plan as a network. This is naturally done by representing a junction as
a vertex and a street as an edge connecting two junctions. However, we need a notion of edge direction
if we want to represent one-way streets.

• In social relations it is often convenient to represent the fact that Alice knows Bob, but that the opposite
is not the case. In a social network this is done by representing people by vertices, and the “who knows
whom” relation by means of directed edge.

• In computer networks, and notably wireless networks, links between two different nodes are often not
symmetric in the sense that messages can generally be successfully sent from station A to B, but not the
other way around. Modeling such a computer network is more conveniently done using directed edges.

1The discussion on graphs and networks is borrowed from van Steen (2010)
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What we are thus seeking is a way to extend graphs that we will be able to model these and similar situations.
The need for associating a direction with the edges of a graph leads to the notion of a directed graph, or simply
digraph:

Definition 4.6: Directed graphs

A directed graph or digraph D consists of a collection of vertices V , and a collection of arcs Ω, for
which we write D = (V, Ω). Each arc ω ∈ Ω is said to join vertex i ∈ V to another (not necessarily
distinct) vertex j ∈ V , we write ω = 〈−→i, j〉 (graphically, represented by an arrow starting at vertex i and
ending at vertex j). Vertex i is called the tail of ω, whereas j is its head. A loop 〈−→i, i〉 is an arc where
vertex i is both head and tail of the arc. For a vertex i of digraph D, the number of arcs with head i is
called the indegree δin(i) of i. Likewise, the outdegree δout(i) is the number of arcs having i as their
tail.

The underlying graph G(D) of a digraph D is obtained by replacing each arc ω = 〈−→i, j〉 by its undirected
counterpart, i.e., the edge e = 〈i, j〉. Figure 4.1 depicts a directed graph.

i1

i2

i3

i4ω11

ω 3
1

ω23ω32

ω
43

ω
12

ω44

Figure 4.1: A directed graph with loops and cycles.

Definition 4.7: Cycle

A directed path (i1, ik) is an alternating sequence [i1, ω1, i2, ω2, . . . , ik−1, ωk−1, ik] of vertices and
arcs with ωl = 〈−−−−→il, il+1〉 such that all vertices and all arcs are distinct. A directed cycle or simply, a
cycle is a directed path (i1, ik) with i1 = ik.

In Figure 4.1, [i2, ω23, i3, ω32, i2] depicts a cycle. The arcs ω11 and ω44 are loops, which we would call
self-cycles.

The Top Trading Cycle algorithm. We now introduce the Top Trading Cycle algorithm (TTC) which was
first proposed by David Gale. It is a simple algorithm that leads to a non-empty core of the housing market with
private endowments. The algorithm works as follows.

Step 1: Construct a digraph, D whose vertices are the individuals in I , i.e., V = I = {i1, . . . , in}. Each
individual points at the agent who owns their most preferred house. Suppose ω5 is the most preferred
house of individual i9. Then, draw the arc ω5 = 〈−−−→i9, i5〉. If an agent’s, say i7, most preferred house is
already owned by them, then the arc 〈−−−→i7, i7〉 is a loop or self-cycle.

Because H is finite, and each vertex has outdegree exactly equal to 1, there must be at least one cycle
(which can be a loop!). Moreover, each agent can be part of at most one cycle. Each agent in the cycle
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is assigned the house they have been pointing at. The entire cycle, i.e., the agents (vertices) and the
assigned houses (arcs) are removed from the market.

Step 2: Let H2 ⊂ H1 ≡ H be the set of available houses after those removed from the market at the end of
Step 1. Perform the same procedure on H2. Each remaining agent now points at the owner of their most
preferred house in H2.

...

Step k: Let Hk ⊂ Hk−1 be the set of available houses after those removed from the market at the end of Step
k − 1. Perform the same procedure on Hk. Each remaining agent now points at the owner of their most
preferred house in Hk.

...

STOP: The algorithm stops when every agent has been assigned to a house or there are no more available houses.
Clearly, it halts in a finite number of steps.

Consider first the following example to see how TTC works.

Example 4.4: TTC

Let I = {Ana, Belen, Carlos, David} and H = {a, b, c, d}. The endowments and preferences are
given by

(ωAna, ωBelen, ωCarlos, ωDavid) = (a, b, c, d);
PAna = a, c, d, b;
PBelen = a, c, d, b;
PCarlos = b, d, c, a;
PDavid = b, c, d, a.

The algorithm yields the allocation µ(Ana)= a, µ(Belen)= b, µ(Carlos)= c, µ(David)= d.
Note that µ is individually rational because all individuals consume at least their endowments. It is also
Pareto efficient because each agent gets their top choice among the available houses.

Ana

Belen

Carlos

Davida

a
b

b

Step 1: H1 = {a, b, c, d}
Remove (Ana, a)

Belen

Carlos

Davidc b

b

Step 2: H2 = {b, c, d}
Remove (Belen, c) and (Carlos, b)

David d

Step 3: H3 = {d}
Remove (David, d)

Figure 4.2: TTC with four individuals and four houses.
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Proposition 4.3

The Top Trading Cycle algorithm yields a matching that is Pareto efficient and individually rational.

Proof. The proof of Pareto efficiency is very similar to the one for Serial Dictatorship (Proposition 4.1). By
contradiction, suppose there is a matching µ′ that Pareto dominates µ, the outcome of TTC. All agents leaving
the market in Step 1 of the algorithm obtain their top choices (among all houses); hence, their assignment in µ′

must be the same as in µ. Because all agents leaving in Step 1 get their top choices in both µ and µ′, agents
leaving in Step 2 cannot get in µ′, houses that, under µ, were assigned to agents leaving in Step 1. Hence, they
must also be getting the same houses under µ′ and µ. The same argument applies inductively for every step,
yielding a contradiction.

To show that the resulting matching is individually rational it suffices to note that houses never leave the
market prior to their owners. Because agents always leave the market with their most preferred house among
the available ones, which includes their endowments, the house to which they are assigned will be at least as
preferred as what they own. �

Next, we show that TTC not only produces Pareto efficient and individually rational matchings, but also
that the matching belongs to the core. Furthermore, we shall show that the core contains a single matching,
which is precisely the one generated by TTC. Therefore, TTC gives us both a way to prove that the core of a
housing market is non-empty, and an algorithm to find the unique matching in the core.

Theorem 4.1: (Shapley and Scarf, 1974; Roth and Postlewaite, 1977)

The core of a housing market is nonempty and contains a unique matching, the one generated by the
Top Trading Cycle algorithm.

Proof. Let µ be the matching obtained from TTC. We want to show that µ is in the core of the housing
market. Let Ik generically denote the set of agents who leave the market in Step k of TTC, i.e., Ik is the cycle
generated in Step k. Suppose on the contrary that there is a coalition C of agents that blocks µ, i.e., there
exists a matching µ′ 6= µ such that µ′(i) �i µ(i) for all i ∈ C and µ′(i) �i µ(i) for some i ∈ C. Let
C ′ = {i ∈ C | µ′(i) �i µ(i)} ⊂ C, i.e., C ′ contains the agents in C, each of whom strictly prefers the house
assigned to them under µ′ to that under µ. Now let j ∈ C ′ be the first one among the members of C ′ who is
matched and leaves the market (with the house µ(j)) at some step k of TTC. Clearly, the house µ′(j) has been
removed from the market strictly before Step k, say k∗ < k. Let µ′(j) = ωi1 so that i1 ∈ C. Agent i1 also has
left the market in Step k∗. Furthermore, i1 /∈ C ′, i.e., µ′(i1) = µ(i1). Because i1 has left the market in Step
k∗, they belonged to the cycle

Ik∗ = [i1, ωi2 , i2, ωi3 , . . . , ωim , im, ωi1 , i1].

The key of the proof is to show that agents i2, . . . , im are also in C \ C ′ (the same as i1), which implies that
everyone leaving the market in Step k∗ is getting the same house under µ and µ′. In particular, because i1 and
im are the first and the last agents of cycle Ik∗ , respectively, we have µ′(im) = µ(im) = ωi1 . So we have
shown that ωi1 = µ′(im) where im ∈ (C \ C ′) ∩ Ik∗ , and at the same time, ωi1 = µ′(j) where j ∈ C ′ ∩ Ik.
The two statements contradict each other.

To show the uniqueness of µ, suppose on the contrary that there is a matching µ′ 6= µ, and µ′ is also in
the core of the housing market. Let i be the first agent who leaves the market in TTC with µ(i), which is not
the same as µ′(i). Suppose, without loss of generality, that i ∈ Ik. Hence, every agent in I1, . . . , Ik−1 gets
the same house under µ and µ′. This implies that, under µ′, every agent in Ik obtains a house of an agent who
leaves the market at Step k or afterwards. Because under µ, agent i obtains their most favorite house among all
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these houses, and µ(i) 6= µ′(i), µ′ must make agent i worse-off. So, agents in Ik would block µ′ via µ, which
is a contradiction to the fact that µ′ is a core allocation. �

The proof of Theorem 4.1 is a bit involved, but the intuition is rather simple. It suffices to look at the
execution of TTC. Consider any cycle that is obtained in the first step. All the individuals involved in this cycle
will obtain their most preferred object. Therefore, any assignment that does not give these individuals their
most preferred object cannot be in the core. All of these individuals will prefer the assignment they obtain
through the cycle. Observe now that, in the cycle, any individual obtains the endowment of another individual
who is also in the cycle.

To summarize, if an assignment is in the core, it must be that all the individuals assigned in the first step
(i.e., in the first cycle) are assigned the same object as the one they get with TTC. It now suffices to repeat this
reasoning with the agents who are assigned in a cycle found in step 2 of TTC. Those individuals can only be
better off if we assign them an object that was assigned in step 1. This is not possible, so the best they can
get is the assignment they obtain in step 2. It is not difficult to see that if the step 2 individuals get something
different from their assignment under TTC (but individuals from step 1 are assigned their TTC assignment),
then the assignment they obtain in step 2 satisfies conditions in the definition of core (cf. Definition 4.4).
Repeating the procedure with the assignment found in steps 3, 4, . . . we end up with a well-defined assignment
that is in the core and such that any other assignment cannot be in the core.

4.3 Incentives in the housing market

We now analyze the incentive issues in the housing market. In particular we analyze mechanisms that use the
Serial Dictatorship algorithm and the Top Trading Cycle algorithm.

Implementability of SD. Recall Example 4.1. The SD algorithm generates µ′ under the priority order, π =

(Ana, Belen, Carlos, David). Then by Proposition 4.1, µ′ is Pareto efficient. However, the proposition assumes
that we know the preferences of the agents; otherwise, how would we be able to run the algorithm? We now
analyze the incentive issues, i.e., if the agents participate in a mechanism that uses the SD algorithm, do they
voluntarily report their true preferences? In other words, is the Serial Dictatorship mechanism strategy-proof?

Proposition 4.4

The Serial Dictatorship mechanism is strategy-proof.

Intuition. The formal proof is left as an exercise. The intuition is very simple. Consider Example 4.1, and
fix the priority order, π = (Ana, Carlos, Belen, David). Note that when it is Belen’s turn to choose, the set of
available houses to her is {c, d}, and this set of available alternatives does not depend on her preferences (but
on those of Ana and Carlos). So, Belen cannot do better by mis-reporting her preferences. �

Implementability of TTC. Next, we analyze the incentive properties of TTC, i.e., whether in a mechanism
that uses TTC all individuals report their preferences truthfully. Why this question is important? If we leave
TTC to run in a decentralized fashion, i.e., individuals (with endowments) participate in voluntary exchanges,
producing a core matching allocation requires a lot of coordination among the individuals, especially in a
market with many objects. To understand this, suppose Ana’s most preferred house is b which is owned by
Belen. So, Ana is first required to find Belen. A trade can immediately take place if Ana owns Belen’s most
preferred house, say a. However, if Belen’s most favorite house is c 6= a, then they have to look for the owner
of c. As you can see that finding the owner of c is not enough to construct a trading cycle as the owner of c may
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have their most favorite house which is different from c.

In an abstract model of house allocation, this delay caused by searching for appropriate trading partners
may not be that outrageous. However, there are real-life situations wherein such delays may turn out to be
exorbitantly costly. Think of the case of kidney transplants. As we shall see in details later (it is well-known,
though) that a successful kidney transplant depends crucially on blood group and tissue group compatibility.
For simplicity, think of an economy consisting of many households, each with only two members—household
i comprises of Ai and Bi who may be wife and husband, mother and daughter, two siblings, etc. Suppose
further that in each household, member A requires a kidney transplant and member B is a potential donor;
however, kidneys of A member and B member are not compatible. So, a household i has to search for another
household j so that the kidneys of Ai and Bj , and those of Aj and Bi are compatible. What are the odds
in finding such compatible households? The possibility of such exchanges gets complicated very quickly if
Ai can receive a kidney from Bj , but Aj cannot from Bi (Thinking of side payments from household i to
household j? This is strictly prohibited in every country in the world except Iran!). In this case, households i
and j require to search for another household k so that a three-way exchange (Ai receives from Bj , Aj receives
from Bk, and Ak receives from Bi) is possible. It requires a lot of coordination and information to identify a
trading cycle involving three or more households in a decentralized market. Hence, the solution is a centralized
clearinghouse.

In the house (or any other object) allocation problem (similar to the college admission problem), a central
clearinghouse in general runs algorithms that yield matching allocations (with some desirable properties, e.g.
efficiency, individual rationality, fairness). However, to run an algorithm, as we have already seen, it requires to
feed the preference list of each individual into a giant computer. What guarantees that individuals report their
preferences truthfully? With any reported preference profiles, it is true that the giant computer will produce
a matching, but it may be not the right one. Think of the very costly situation wherein the clearinghouse
algorithm suggests, according to the reported preferences, a two-way kidney exchange between households
i and j. However, Bi’s kidney will not function in Aj’s body (moreover, IMSS had incurred a huge cost,
which implies a burden on the tax payers!). The Top Trading Cycle algorithm (or a modified version of it) is
very compelling in situations starting from room allocation in student dormitories to kidney transplants—it is
dominant strategy for all participants in a mechanism that uses TTC to report their preferences truthfully. We
first prove the following result.

Lemma 4.1

Take an agent i and fix a profile of preferences P−i for the other agents. Consider two preference
relations of i, Pi and P′i. Let k and k′ be the steps in TTC at which agent i leaves the market while
reporting Pi and P′i, respectively. At step k∗ = min{k, k′}, the houses and agents remaining in the
market are the same under both preferences.

Proof. The key to show this lemma is to note that whether i reports Pi or P′i does not affect any of the cycles
formed prior to i leaves the market. Assume, without loss of generality, that k′ ≥ k > 1, i.e., there is at least
one step before i leaves the market while reporting Pi. The cycle formed in round 1 depends on the preferences
reported by other agents, P−i. Even if i points at an agent in the cycle, the only way for i to be part of the cycle
(and leave the market) is that someone in the cycle also point at i, which does not occur (otherwise i would
have left the market in Step 1). Therefore, whatever preferences i reports, Pi or P′i, at the start of round k, as
the set of cycles leaving the market in prior rounds is the same, the sets of remaining houses and agents are also
the same. �

Theorem 4.2: (Roth, 1982b)

The Top Trading Cycle mechanism is strategy-proof.
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Proof. Consider an agent i with true preferences Pi, a fixed profile P−i of other agents, and alternative pref-
erences P′i of i. Let k and k′ be the steps in TTC at which i leaves the market while reporting Pi and P′i,
respectively. We consider two cases.

First, assume that k′ ≤ k, i.e., the case in which i would leave the market at the same time or before by
misreporting their preferences. At the beginning of round k′, by Lemma 4.1, the sets of agents and houses in
the market are the same under both Pi and P′i. Note that under P′i, agent i leaves the market with some house
h′, which is part of a cycle:

Ik′ = [i1, ω2, i2, ω3, . . . , ωi, i, h
′ = ω1, i1],

in which i1, i2, . . . are all pointing at their favorite houses, under P−i. The key is to note that the chain
(h′ = ω1, i1, ω2, , i2, ω3, . . . , ωi) will remain in the market until i chooses to close off the cycle, either by
pointing at h′ or by pointing somewhere else that eventually ends in h′ (or any other house in the cycle). Hence,
by reporting truthfully, i will point at their top choice in every subsequent rounds, and might get something
better or eventually pick h′ if it is the most preferred remaining house. In other words, i has no incentive to
“close” the cycle before, and leave the market with h′.

Second, assume that k < k′, i.e., the case in which i would leave the market afterwards by misreporting
preferences. Note that by reporting truthfully, i leaves the market at step k with the best house among all the
remaining ones at the start of step k. Because the houses remaining at the start of round k′ is a subset of the
ones at round k, i has no incentive to misreport their preferences to leave afterwards. �

The next Theorem goes further and shows that, actually, TTC is the unique mechanism that satisfies the
above properties. That is, there exists no other mechanism that is also strategy-proof, Pareto efficient and
individually rational. We omit the technical proof which can be consulted in Robinson-Cortés (2021).

Theorem 4.3: (Ma, 1994)

An allocation mechanism is strategy-proof, Pareto efficient and individually rational if and only if it is
the Top Trading Cycle mechanism.

4.4 House allocation with mixed endowments

In the housing market, there are situations where some individuals have endowments (private endowments) and
some do not (public endowments). A common situation is that of student dorms on campuses. Many colleges
and universities offer housing to their students, and because each year some students graduate and leave their
dorms and new students arrive, we have a situation with a mix of private and public endowments:

• Private endowments: the students who were already on campus the previous academic year (existing
tenants). The room they occupied the previous year is their private endowments (occupied houses).

• Public endowments: the rooms that are left vacant by the students who just graduated (vacant houses).
The newly arrived students do not have any endowments (new applicants).

Abdulkadiroğlu and Sönmez (1999) were the first to analyze house allocation problems with mixed private-
public endowments. In particular, they identify a few popularly-used algorithms that turn out to be inefficient.
They then propose solutions to the inefficiency problem. We shall analyze such matching mechanisms in terms
of examples (without going into much of their details).
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4.4.1 Inefficient algorithms

Random Serial Dictatorship with Squatting Rights. The first matching mechanism that is extremely common
is the so-called Random Serial Dictatorship with Squatting Rights (henceforth, RSDSR). This mechanism is
or was used for undergraduate housing at Carnegie-Mellon, Duke, and Harvard among others. The idea is to
run SD with random priority orders. However, prior to that, the existing tenants are given a choice whether
they want to participate in the market or not. If an existing tenant chooses to opt out, they keep their house;
otherwise they participate in the RSD mechanism but loses their endowment. The algorithm works as follows.

Step 1: Existing tenants decide whether they want to keep their houses. If they do so, they are matched with their
endowments. Otherwise, the houses are added to the pool of vacant houses.

Step 2: The Serial Dictatorship algorithm is run under a random priority of the market participants (new appli-
cants and existing tenants who have decided to participate).

The main concern with this algorithm is the following. If an existing tenant decides to participate in the
mechanism, they run the risk of ending up with a house assignment that is less preferred to the one they are
initially endowed with. Consequently, risk-averse existing tenants may prefer to opt out, which can lead to
inefficiency.

Example 4.5

Let I = {Ana, Belen, Carlos} and H = {a, b, c}. The endowments are given by
(ωAna, ωBelen, ωCarlos) = (a, ∅, ∅). That is, Ana is the only existing tenant who owns house a (which
is the occupied house), Belen and Carlos are the new applicants, and b and c are vacant houses. The
preferences are given by:

PAna = b, a, c;
PBelen = b, c, a;
PCarlos = a, b, c.
Run SD with priority order π =(Carlos, Belen, Ana). First suppose that Ana participates in the market.
First Carlos gets to choose, and he will choose house a. Then, Belen chooses b, her most preferred one
among the remaining houses {b, c}. So, Ana is left with house c. The matching is not individually
rational. Clearly, Ana would be better-off keeping her endowment, house a. If Ana opts out of the
market, then there are only two available houses, b and c. Carlos, first in the priority order, takes b. So,
Belen is assigned house c. This matching is not Pareto efficient because it is dominated by the matching
µ(Ana)= b, µ(Belen)= c and µ(Carlos)= a.

Two popular algorithms, which are used for graduate housing at the University of Rochester and MIT, try
to correct the shortcomings (that existing tenants may end up being worse-off) of RSDSR

Random Serial Dictatorship with Waiting List. The Rochester solution is called the Random Serial Dicta-
torship with Waiting List (henceforth, RSDWL). It runs SD with a random priority order, but at any step an
individual can only take a house that is available. A house is available if it is either a vacant house in the public
endowment or if it is left vacant by an existing tenant. For a new applicant, all houses are obtainable, and for an
existing tenant, a house is obtainable if it is their house (i.e., endowment) or a house they prefer to their house.
The algorithm works as follows.

Step 1: Draw a random priority order of all market participants (new applicants and existing tenants).
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Step 2: The set of available houses is the set of vacant houses (i.e., those not currently owned by an existing
tenant). The agent with the highest priority among those who have at least one obtainable house is
assigned their most preferred available house. This agent is then removed from the market along with
their newly assigned house. If the individual is an existing tenant, their endowment is added to the pool
of available houses (if the endowment is not the most preferred one).

...

Step k: The set of available houses is constructed at the end of step k − 1. The agent with the highest priority
among the remaining individuals with at least one obtainable house is assigned their most preferred avail-
able house (and is removed from the procedure along with the newly matched house). If the individual is
an existing tenant, their endowment is added to the pool of available houses (if the endowment is not the
most preferred one).

...

STOP: The algorithm halts when there is either no remaining individual or when there is no available house left.

The algorithm is clearly individually rational. However, it may yield a Pareto inefficient matching.

Example 4.6

Let I = {Ana, Belen, Carlos} and H = {a, b, c, d}. The endowments are given by
(ωAna, ωBelen, ωCarlos) = (a, b, c). That is, there are three existing tenants, no new applicants, three
occupied houses and one vacant house. The preferences are given by:

PAna = b, c, a, d;
PBelen = c, a, b, d;
PCarlos = a, d, c, b.
Run SD with priority order π =(Ana, Belen, Carlos). In the first step, only the vacant house, d can be
occupied. Neither Ana nor Belen wants it. Carlos takes d, and both Carlos and d are removed from
the market. Moreover, now c becomes available as a vacant house. In the next step, we consider the
remaining individuals, Ana and Belen. The only available house is house c, which is obtainable for
both of them. Ana has the highest priority, so she takes c, now making her endowment, a, available.
Also, Ana and c are removed from the market. In the final step, the available house is house a, which
is obtainable for Belen. So she takes it. The final matching is given by µ(Ana)= c, µ(Belen)= a and
µ(Carlos)= d.

It is not difficult to see that the above matching µ is individually rational. However, it is not Pareto efficient
as it is Pareto dominated by another matching µ′ wherein µ′(Ana)= b, µ′(Belen)= c and µ′(Carlos)= a.

MIT-NH4. The New House 4 (NH4) algorithm, which has been in use at MIT since the 1980s is another
attempt not to make existing tenants worse-off relative to their endowments. The algorithm works as follows.

Step 1: Draw a random priority order of all market participants (new applicants and existing tenants).

Step 2: The first individual is tentatively assigned to their most preferred house among all houses, the second indi-
vidual is assigned to their most preferred house among the remaining houses, and so on, until a squatting
conflict occurs. A squatting conflict occurs if the requested house has an existing tenant for whom all
the remaining houses are less preferred to their endowment. Thus, there is a conflicting individual who
chose (earlier) the tenant’s house.

61



Step 3: If a squatting conflict emerges, then:

• The existing tenant (the one with the conflict) is assigned their house.

• The tentative assignment of the conflicting individual is canceled as well as those of all the individ-
uals who chose after the conflicting individual.

• The process starts again with the conflicting individual as first in the priority order.

STOP: The algorithm halts when there is no house or individual left. At this point, all tentative matchings are
the final ones.

Example 4.7

Let I = {Ana, Belen, Carlos, Diana, Eduardo} and H = {a, b, c, d, e}. The endowments are given by
(ωAna, ωBelen, ωCarlos, ωDiana, ωEduardo) = (a, b, c, d, ∅). That is, there are four existing tenants, one
new applicant, four occupied houses and one vacant house. The preferences are given by:

PAna = c, d, e, a, b;
PBelen = d, e, b, c, a;
PCarlos = e, c, d, b, a;
PDiana = c, e, d, b, a;
PEduardo = d, e, c, a, b.

Take the priority order π =(Ana, Belen, Carlos, Diana, Eduardo). In Step 1, Ana is tentatively assigned
house c (a is vacant), Belen is tentatively assigned house d (b is vacant), and then Carlos is tentatively assigned
house e (c is vacant). When it is Diana’s turn, there is a conflict: her house, d, and all the houses she prefers to
her endowment, c and e, are taken. The person who is tentatively assigned her house is Belen; so Belen is the
conflicting individual. So we cancel Belen’s as well as Carlos’ tentative matches (because Carlos decided after
Belen), and house d is assigned to Diana. Both Diana and house d are removed from the market.

In Step 2, we start again with Belen. The next best alternative for her among the available houses {a, b, e}
for her is house e, which she gets (temporarily). When it is Carlos’ turn, again we have a conflict: Ana is the
conflicting individual. So, we cancel Ana’s temporary assignment (as well as Belen’s), and house c is assigned
to Carlos. Both Carlos and house c are removed from the market.

In Step 3, we start with the conflicting individual, Ana. She gets e, her best choice among the available
houses {a, b, e}. Belen is assigned to her endowment, b, and Eduardo, to a. The algorithm halts. The final
matching is given by µ(Ana)= e, µ(Belen)= b, µ(Carlos)= c, µ(Diana)= d and µ(Eduardo)= a.

Although the algorithm yields an individually rational matching µ, it is Pareto dominated by another match-
ing µ′ (not necessarily Pareto efficient) wherein µ′(Ana)= c, µ′(Belen)= b, µ′(Carlos)= e, µ′(Diana)= d and
µ′(Eduardo)= a.

4.4.2 Efficient mechanisms

You Request My House-I Get Your Turn. The problem with the MIT-NH4 algorithm is that whenever there is
a squatting conflict, the existing tenant does not get anything better than their endowment. Abdulkadiroğlu and
Sönmez (1999) propose a modification of the MIT-NH4 algorithm—termed as You Request My House-I Get
Your Turn (YRMH-IGYT). The difference between MIT-NH4 and YRMH-IGYT lies in that how a squatting
conflict is resolved in the latter. In MIT-NH4, a conflict emerges when some agent has chosen the house of
an existing tenant, but the existing tenant did not yet get the chance to choose. So, they are stuck with their
endowment. Instead of writing the YRMH-IGYT algorithm, we point out the main modifications over MIT-
NH4.
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• When a squatting conflict emerges, if the existing tenant has already been temporarily assigned a house
(different from their endowment), do not disturb the process, and proceed. By contrast, if the existing
tenant did not yet get the chance to choose, then cancel the temporary assignment of the conflicting
individual and all the subsequent ones. Insert the existing tenant before the conflicting individual in the
priority order, and proceed. Why is it called YRMH-IGYT?

• A cycle, say [i1, ω2, i2, . . . , ωk, ik, ω1, i1] (including a loop) may form. In this case, remove all the
individuals in the cycle after assigning them the house they pointing at, and we go ahead with the proce-
dure.

Example 4.8

Consider the set up of Example 4.7. Run YRMH-IGYT with the priority order π =(Ana, Belen, Carlos,
Diana, Eduardo).

In Step 1, Ana, first in the priority order, chooses her most preferred house, c. But c has an ex-
isting tenant, Carlos, who has not yet chosen any house. This is a squatting conflict, so we cancel Ana’s
tentative match, and move Carlos above Ana. The order of individuals is now π′=(Carlos, Ana, Belen,
Diana, Eduardo).
In Step 2, according to the priority order, Carlos chooses e which is a vacant house, then Ana chooses
c. When it is Belen’s turn, there is a conflict. She demands Diana’s endowment d, but Diana has not
chosen yet. So, we cancel Belen’s assignment, and move Diana ahead of Belen. The new priority order
is π′=(Carlos, Ana, Diana, Belen Eduardo).
In Step 3, we start with Diana. She chooses her endowment d. This is a loop. So, Diana is assigned d,
and both of them are removed from the market.
In Step 4, now it is Belen’s turn. She picks b. Again it is a loop. So, Belen is given her own house, and
both of them are removed from the market.
In Step 5, it is now Eduardo’s turn to pick, and he chooses a. Ana is a’s tenant, but she already has a
tentative assignment, c. So, there is no conflict.
There are mo more claims. The algorithm halts. The final matching is µ′ in Example 4.7, i.e., µ′(Ana)=
c, µ′(Belen)= b, µ′(Carlos)= e, µ′(Diana)= d and µ′(Eduardo)= a.

Theorem 4.4: (Abdulkadiroğlu and Sönmez, 1999)

A matching mechanism that uses the YRMH-IGYT algorithm is Pareto efficient, individually rational,
and strategy-proof.

In fact, Abdulkadiroğlu and Sönmez (1999) show that YRMH-IGYT is equivalent to a version of TTC (mod-
ified for mixed endowments). A matching mechanism that uses the modified TTC is also Pareto efficient,
individually rational, and strategy-proof (see Abdulkadiroğlu and Sönmez, 1999, Propositions 1, 2, Theorem
2).

Modified Top Trading Cycle. The modified TTC is constructed in the following way. All individuals and all
houses (occupied and vacant) are the vertices of a directed graph. Fix a priority order π. Each agent points at
their most preferred house (draw an arc with an individual as its tail, and with their most preferred house as
its head), each occupied house points at its existing tenant (draw an arc with an occupied house as its tail, and
the owner as its head), and each vacant house points at the first individual in the priority order (draw an arc
with each vacant house as its tail, and with the first individual in the priority order as its head). Remove from
the market the cycles (there must be at least one) by assigning each agent in the each cycle the house they are
pointing at. Repeat the same process with the remaining individuals and houses.
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Example 4.9

Consider the set up of Example 4.7. Run the modified TTC with the priority order π =(Ana, Belen,
Carlos, Diana, Eduardo). If you draw so many arcs (from agents to houses and vice versa), the figure
looks messy, and hence, identifying a cycle is visually difficult (see Haeringer, 2017, Figures 11.5, 11.6,
11.7). Instead, do the following equivalent process. Start with the first agent in the priority order to find
a cycle. Remove the cycle. Then start with the second individual to find a cycle; remove the cycle, and
so on until the algorithm halts.
In the first round, Start with Ana to find a cycle:
Ana→ c→Carlos→ e →Ana
House e, the vacant house pointed at Ana, the first agent in π. Assign house c to Ana and house e to
Carlos, and remove them from the market.
In the second round, Start with Belen to find a cycle:
Belen→ d→Diana→ d

Assign house d to Diana, and remove them from the market
In the third round, Start again with Belen to find a cycle:
Belen→ b →Belen
Finally in the fourth round, only Eduardo and house a are left. Match them. The process ends here. The
final matching is µ′ in Example 4.8, i.e., µ′(Ana)= c, µ′(Belen)= b, µ′(Carlos)= e, µ′(Diana)= d and
µ′(Eduardo)= a.

Given a priority order, YRMH-IGYT and the modified TTC produce the same matching outcome which is
Pareto efficient, individually rational and strategy-proof. Note that the final matching depends on the priority
order (i.e., two distinct orders may yield two distinct allocations) because a vacant house at the beginning of
any round points at the first agent in the priority order.

4.5 Application I: Kidney exchange

Getting a kidney transplant is the preferred treatment for people suffering from acute kidney failure. Trans-
planted kidneys come from both deceased and living donors. Of the 17,107 kidney transplants that took place
in the United States in 2014, 11,570 (67.6%) came from deceased donors and 5,537 (32.4%) came from living
donors. However, there is a worldwide shortage of kidneys. In 2016, over 120,000 people were waiting for a
lifesaving organ transplant in the United States. Of these, more than 100,000 were waiting for kidneys. The
median patient waits over 3.5 years to receive a kidney. In every country in the world, with the exception of
Iran, it is illegal to buy and sell human kidneys.

Typically, living donors are relatives or closely-related people who are willing to donate one of their kidneys
to a loved one. However, despite the good intentions, wishing to donate a kidney is sometimes not enough.
For a kidney donation to be successful, the blood and tissue types of the donor and the recipient need to be
compatible. One of the most successful applications of market design to date has been to increase the supply of
kidneys from living donors by performing kidney exchanges. The first kidney exchange in the world was made
in 1991 in South Korea. In Europe, the first kidney exchange was made in Switzerland in 1999. In the United
States, it was in 2000 in Rhode Island.

As of January, 2016 in the United States, there are a bit more than 100,000 people waiting for a kidney
transplant. Each year, nearly 4,000 patients become too sick to receive a transplant, and almost 5,000 patients
die waiting for a kidney. An alternative (not close substitute of transplant!) is dialysis which costs more than
80,000 USD per year. Hence, maximizing the number of transplants can save lives (and money).
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In a two-way pairwise kidney exchange, two patients who are incompatible with their respective donor
exchange kidney donors. That is, Ana’s donor Albert gives his kidney to Bernardo; in exchange, Ana receives
the kidney Belen, Bernardo’s donor. In this section, we shall apply some of the tools that we have learnt from
the house allocation problem to the problem of how to design kidney exchanges. We shall also learn additional
tools to design optimal pairwise exchanges.

4.5.1 Blood and tissue type compatibility

Humans may have one of four different ABO blood-types: O, A, B, or AB. As far as blood-types are concerned,
everyone can donate or receive a kidney from someone with the same blood-type, but not necessarily so across
blood-types. Figure 4.3 illustrates blood-type compatibilities. People with blood-type O may donate a kidney
to anyone, but cannot receive a kidney from someone with a different blood-type. People with blood-type A
or B may donate a kidney to AB’s, but may receive a kidney only from O-types. And people with blood-type
AB cannot donate a kidney to someone with a distinct blood-type, but may receive a kidney from anyone.
Around 41.2% of the worldwide population has blood-type O, 29.4% has A, 23.12% has B, and 6.2% has AB.
Interestingly, the distribution of ABO blood-types varies across countries and ethnicities.

O

B

A

AB

Figure 4.3: Blood-type compatibility.

If one person wishes to donate a kidney to another person, in addition to their blood-types being compatible,
it is required to have tissue type compatibility. When two people share the same Human Leukocyte Antigens
(abbreviated as HLA), they are said to be a “match”, that is, their tissues are immunologically compatible with
each other. HLA are proteins that are located on the surface of the white blood cells and other tissues in the
body. There are three general groups of HLA, they are HLA-A, HLA-B and HLA-DR. There are many different
specific HLA proteins within each of these three groups (e.g. 59 different HLA-A proteins, 118 different HLA-
B and 124 different HLA-DR). Each of these HLA has a different numerical designation, for example, you may
have HLA-A1, while some one else might have HLA-A10.2 A set of HLA-A, HLA-B and HLA-DR is called
a haplotype. For example, a haplotype is {A3, B14, DR10}. Each human in general has two HLA haplotypes,
and each human being inherits one haplotype from each of the two parents. So, two siblings have a probability
of 25% of being an exact “HLA match”. After an HLA match, a patient-donor pair is required to undergo a
“crossmatch” test. The crossmatch is a test which determines if the recipient has antibody against the potential
donor. Antibody is a protein, present in the blood serum, which could injure the donor’s cells by attacking
the HLA. The antibody will only injure the donor’s cells if it is specific for the donor’s particular HLA. Not
everyone has antibody against HLA. However, with the advancement of medicines in this field, a small degree
of tissue-type incompatibility can be rectified by immunosuppressants, which are drugs that diminish the body’s

2Source: Kidney Transplantation: Past, Present, and Future.
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ability to reject the foreign organs.

Blood-type and tissue-type compatibilities have been used in the design of mechanisms to allocate do-
nated kidneys. For instance, when a cadaveric kidney (donated by a deceased patient) becomes available for
transplantation, the priority of each patient in the waiting list is typically determined by factors including the
blood-type, HLA type-compatibility, time spent on the waiting list, etc. Similarly, the effects of distinct de-
sign choices may depend on the structure of the ABO blood-type compatibilities. For example, a proposed
allocation rule known as an indirect exchange program aims to increase the amount of kidneys by exchanging
kidneys from living donors for priorities in the waiting list. That is, a living donor who is incompatible with
their intended recipient donates their kidney, and, in exchange, their intended recipient receives a higher priority
for the next compatible kidney. However, it has been observed that such indirect exchange programs can harm
type O patients who have no living donors and are currently in the waiting list.

4.5.2 Kidneys as houses, patients as owners

Pairwise kidney exchange may be seen as an application of the house allocation problem with mixed endow-
ments the we have analyzed in Section 4.4. We can view kidneys as “houses”. Incompatible patient-donor
pair as “existing tenants”, each of whom owns a house. And patients who require kidneys and have no donor
are “new applicants” who do not own a house initially. Finally, cadaveric kidneys and kidneys donated from
altruistic donors are “unoccupied houses”. Patients have a preference ranking over kidneys which may depend
on the blood and tissue-type compatibilities, location of the kidney, and any other factor that may affect the
probability of a successful transplant, such as donor age, kidney size, medical history, etc. Importantly, patients
may have heterogeneous preferences over otherwise compatible kidneys.

We would thus use an algorithm similar to Top Trading Cycle for the pairwise kidney exchange problem.
However, there are important differences with the problem of house allocation with existing tenants which are
pointed out by Roth, Sönmez, and Ünver (2004). In a kidney exchange problem, there are two types of kidneys
and two types of patients.

1. Some patients come with a donor (and thus a kidney). In other words, they have “private endowments”.
But there are also patients who do not have a living donor. Those patients are theoretically only eligible
for cadaveric kidneys, as they cannot theoretically participate in a pairwise exchange.

2. Some kidneys are “held” by some patients, namely the patients who have a living donor. The other kid-
neys are those coming from cadaveric donors. However, there are uncertainties regarding the availability
of such kidneys. Those that come from cadaveric donors differ from those coming from living donors in
that they cannot be considered kidneys that are available (or not yet assigned). In other words, kidneys
from deceased donors are not part of the public endowments. So, for a patient, there are two options:

(a) Obtain a kidney from a living donor.

(b) Join the waiting list (or remain on it).

To sum up, the problem of designing an exchange procedure for kidneys is to combine, at the same time,

• trades among patient-donor pairs, and

• the management of the waiting list.

4.5.3 Trading cycles and chains

Consider the following example.
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Example 4.10

Consider the set of patients, I = {Angel, Carlos} and the set of donors, N = {Ana, Carolina}. The
patient-donor pairs are A =(Angel, Ana) and C =(Carlos, Carolina). This means Angel and Ana are
not compatible with each other, and so are Carlos and Carolina.

PAngel= Carolina, w;
PCarlos= Ana, w.
Each patient has a (strict) preference relation over the available kidneys; otherwise, he joins the “waiting
list”, denoted by w. Now each donor points at her paired patient (as if houses pointing at their owners,
but the owners cannot live in the houses they own), and each patient points at his most preferred kidney.
In this case, we have the following cycle:
Ana→Angel→Carolina→Carlos→Ana
Now suppose an alternative preference relation of Carlos, P′Carlos=w, Ana, i.e., Carlos prefer to joint the
waiting list rather than having Ana’s kidney. In this case, we have a chain:
Ana→Angel→Carolina→Carlos→ w

Thus, TTC cannot be applied here in a straight forward way. Moreover, as we shall see later that a
patient-donor pair can be part of multiple chains (as several patients can be assigned places in the same
waiting list) as opposed to the fact that it can form part of at most one cycle.

The Top Trading Cycle and Chains (TTCC) algorithm. Roth et al. (2004) analyze a modified version of
TTC in which they allow for patients to have preferences over the set of currently available kidneys and a place
in the waiting list, denoted by w. The algorithm is a multi-step procedure, where all steps are identical. For
each h ≥ 1, proceed as follows.

Step h.1: Each patient points at their most preferred among acceptable kidney among the available kidneys. If, for
a patient, none of the available kidneys is acceptable, then they points at the waiting list option. Each
kidney points at its paired patient (e.g., if Angel and Ana are a patient-donor pair, then the kidney of Ana
points at Angel).

Step h.2: If there is one or more cycles, proceed to the exchange as follows. For each cycle, each patient in the
cycle is allocated the kidney they are pointing at. All the patients and kidneys involved in a cycle are
removed from the market. Then proceed to Step h + 1. If there is no cycle (i.e., there is a chain of the
form [i1, k2, i2, . . . , km, im, w] in that patient im is pointing at the waiting list rather than the kidney
of donor 1, k1), go to Step h.3.

Step h.3: Select one chain, and allocate the kidneys in the following way:

• The last patient in the chain is added to the waiting list.

• The other patients in the chain (if any) are assigned the kidney they are pointing at.

For all patients involved in the selected chain, the assignment is final. A chain selection rule determines
whether the selected chain is removed from the problem. Then go to Step h+ 1.

STOP: The algorithm halts when all patients have either been assigned a kidney or added to the waiting list.

A couple of comments on TTCC are called for. Roth et al. (2004) show that, as long as there is a finite number
of patient-donor pairs, there must always exist either a cycle or a chain. Whether there is a cycle or a chain,
at each step of the algorithm, some patient-donor pair(s) will be removed from the market. Therefore, at each
step, the pool of remaining patients shrinks. Eventually, we shall have all patients removed and TTCC halts.
Second, if there are multiple chains, the algorithm does not specify how a particular chain is selected, and how
it is removed from the market. In what follows, we analyze several chain selection rules.
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4.5.4 Chain selection rules

Consider the following example.

Example 4.11

Consider the set of patients, I = {Angel, Bernal, Carlos} and the set of donors, N = {Ana, Be-
len, Carolina}. The patient-donor pairs are A =(Angel, Ana), B =(Bernal, Belen) and C =(Carlos,
Carolina). This means Angel and Ana are not compatible with each other, and so on.

PAngel=w, Belen, Carolina;
PBernal= Ana, w, Carolina;
PCarlos= Ana, w, Belen.
Under the above preferences, as depicted in Figure 4.4, we have two chains:
[Belen, Bernal, Ana, Angel, w] and [Carolina, Carlos, Ana, Angel, w].
So, patient-donor pair A is clearly part of two different chains. Thus, the algorithm must select one of
the two chains.

Belen Bernal

Carolina Carlos

Ana Angel w

Figure 4.4: Two overlapping chains.

Another question we have to address when treating with chains is whether we should remove from the
problem the patients and the kidneys involved in a selected chain. For example, consider the chain starting
with Belen in Figure 4.4, and suppose that the algorithm selected it. The algorithm states that once this chain is
selected, Bernal will obtain Ana’s kidney and Angel will join the waiting list, independently of what happens
at the following steps (i.e., the algorithm states that this assignment is final for Bernal and Angel). However,
note that in this matching we do not specify what to do with Belen’s kidney. There are two solutions:

1. It is assigned to someone on the waiting list. In this case, because Belen’s kidney is no longer available
(i.e., for any patient that is still in the pool of patients without an assigned kidney), we can remove Belen
and all the other patient-donor pairs involved in the chain.

2. We keep Belen’s kidney available. In this case, we do not remove the chain from the problem.

To see the difference between the two possible solutions, consider the following example.

Example 4.12

We keep the same specifications of Example 4.11, except that we change the preference relation of
Carlos to P′Carlos= Ana, Belen, w. The “arrow drawing” phase will yield the same figure as Figure 4.4. If
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we select the chain staring from Belen, and remove everybody involved in this chain, then Carlos does
not have any possibility of having a transplant. By contrast, if we keep the chain in the problem, then
in the second step, Carlos will point at Belen’s Kidney (which is now available to him). As depicted in
Figure 4.5, there will be new chain
[Carolina, Carlos, Belen, Bernal, Ana, Angel, w]

which would open up the possibility of a transplant for Carlos.

Belen Bernal

Carolina Carlos

Ana Angel w

Figure 4.5: Two overlapping chains.

Roth et al. (2004) propose and analyze different selection rules:

(a) Choose the smallest chains, and remove from the problem the patients and kidneys in those chains once
the assignment is determined.

(b) Choose the longest chain, and remove from the problem the patients and kidneys in that chain (pick one
chain at random if it is not unique).

(c) Choose the longest chain, and keep in the problem the patients and kidneys in that chain (pick one at
random if it is not unique).

(d) Choose the chain that starts with the highest-priority patient, and remove from the problem the patients
and kidneys in that chain.

(e) Choose the chain that starts with the highest-priority patient, and keep in the problem the patients and
kidneys in that chain.

(f) Prioritize patient-donor pairs so that pairs with a type O donor have a higher priority (than the pairs whose
donor is not of type O). Then choose the chain that starts with the highest-priority pair. If the starting pair
in the chain has a type O donor, then remove from the problem the patients and kidneys in that chain.
Otherwise keep in the problem all the patients and donors that are in the chain.

Given a pairwise kidney exchange problem, a matching is Pareto efficient if there is no other matching that is
weakly preferred by all patients and donors and strictly preferred by at least one patient-donor pair. Roth et al.
(2004) analyzes whether TTCC selects a Pareto efficient matching.
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Theorem 4.5: (Roth, Sönmez, and Ünver, 2004)

Consider a chain selection rule such that any chain selected at a nonterminal round remains in the
procedure, and thus the kidney at its tail remains available for the next round. The Top Trading Cycle
and Chains algorithm yields a Pareto efficient matching.

4.6 Application II: School choice revisited

In Chapter 3, we have analyzed the school choice problem as an application to the college admission problem.
Because schools are assumed not to have preferences over students, they can as well be treated as objects (that
provide educational services). Therefore, the school choice problem can also be treated as an application to the
housing market. In order to obtain an efficient matching, we can also use a modified version of the Top Trading
Cycle algorithm (school choice TTC).

The principal difference with the housing market is that schools can enroll many students up to their capac-
ities, and modifications to the standard TTC must be made accordingly. We do the following. Suppose a school
s has capacities qs > 1. We would treat this school as qs copies of the same school. In the pointing phase of
the algorithm if a student i and a school s are in a cycle, then we shall remove the student and one copy of the
school from the market. This is equivalent to keeping the school s in the market, but reducing its capacity by 1,
i.e., qs − 1 for the subsequent pointing phases. Otherwise, the algorithm is identical to the studied in Section
4.2. The school choice TTC halts when all students have been removed from the market or when all schools
have remained with 0 capacity.

Two equivalent versions of the algorithm will be considered. We only sketch how the pointing phases work.
For details, see Haeringer (2017, Section 13.2.4). The main ingredients of the first version are the following.

• Each student points at their most favorite school. Each school points at its highest-priority students.

• Once a student and a school are in a cycle (there is at least one at each step of the algorithm), remove
the student from the market after assigning them to the school. By contrast, let the school remain in the
market after reducing its capacity by 1.

We reconsider the set up of Exercise 3.2 in Chapter 3.

Example 4.13: School choice TTC: version 1

Consider a school choice problem with I = {Ana, Belen, Carlos, Daniel} and S = {a, b, c} with
capacities (qa, qb, qc) = (2, 1, 1). The preferences of the students are given by

PAna = a, b, c, Ana;
PBelen = a, b, c, Belen;
PCarlos = b, a, c,Carlos;
PDaniel = a, c, b,Daniel.

On the other hand, schools’ priority lists are given by

πa = Ana, Carlos, Daniel, Belen;
πb = Ana, Belen, Daniel, Carlos;
πc = Belen, Carlos, Daniel, Ana.
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In Step 1, there is one cycle
Ana→ a→ Ana.

Daniel Ana Belen Carlos

a b c

So, remove Ana after assigning her to school a.

At the beginning of Step 2, the remaining set of students is I ′ = I \ {Ana} = {Belen, Carlos,
Daniel}. The set of schools remains the same, but the capacity vector is updated to q′ = (1, 1, 1). The
priority lists are now updated to

π′a = Carlos, Daniel, Belen;
π′b = Belen, Daniel, Carlos;
π′c = Belen, Carlos, Daniel.

In this step, there is one cycle

Carlos→ b→ Belen→ a→ Carlos.

Daniel Belen Carlos

c a b

Both schools a and b now have exhausted their capacities. So, assign Carlos to school b and Belen to
school a, and remove them from the market.

In Step 3, There remain only one student, Daniel and only one school, c with capacity 1. So,
they are assigned to each other.

Daniel c

The final match is given by µ(a) = {Ana, Belen}, µ(b) = Carlos and µ(c) = Daniel.

Note that Ana, Belen and Carlos are matched to their top choices, whereas Daniel assigned to his second
choice. Thus, the matching is efficient. It is also easy to verify that the mechanism is also strategy-proof.
However, note the the above matching is not stable. Clearly, it is individually rational and not wasteful, but it
does not eliminate justified envy. Notice that Daniel prefers school a to school c (his current match). On the
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other hand, school a has Belen who is lower-ranked than Daniel in this school. So, Daniel and school a form a
blocking pair.

In TTC, drawing arrows may be confusing in that it may mean that both sides of the market have prefer-
ences. But schools do not have preferences over the students, they merely have priority lists. An equivalent
version of school choice TTC is similar to TTC in the case of house allocation with existing tenants. So, we
shall consider a school choice TTC wherein only the students point to the schools. The highest-priority students
in a school are considered as if they own one seat apiece in that school (as existing tenants). So, in the arrow
drawing phase, if student i wants a seat in a given school which is owned by student j, we would draw an
arrow from i to j. The subtle difference here is that if a particular student is the top priority student of more
than one schools, say of three schools, then this student initially owns three seats in three different schools. In
the algorithm, whenever cycles are removed, the ownerships are updated among the remaining students and
schools.

Example 4.14: School choice TTC: version 2

Consider the same specifications of Example 4.13. The ownership structure along with the preferences
of the students are given by

PAna = a, b, c, Ana;
PBelen = a, b, c, Belen;
PCarlos = b, a, c,Carlos;
PDaniel = a, c, b,Daniel.

Because Ana is the highest-priority student in both schools a and b, she owns one seat in each
school. On the other hand, Belen owns one seat in school c. The ownerships are indicated by red letters.

In Step 1, Ana points at herself because she owns a seat in her most favorite school (a loop),
and all the rest point at Ana.

Ana

Belen

Carlos

Daniela

a

b

a

Step 1: S1 = {a1, a2, b, c}
Remove (Ana, a1)

Call the two copies of school a, a1 and a2. because there is a cycle: [Ana, a, Ana], assign Ana to a1,
and remove them from the market.

At the beginning of Step 2, update the ownership and capacity structures.

PBelen = a2, b, c, Belen;
PCarlos = b, a2, c,Carlos;
PDaniel = a2, c, b,Daniel;
(qa2 , qb, qc) = (1, 1, 1).
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Belen is second-ranked by school a after Ana, and hence, Belen now owns a seat in a as well.
Belen points at Carlos who owns a seat in school a, her top choice, Carlos points at Belen who owns a
seat in school b, her top choice, and Daniel points at Carlos who owns a seat in a, Daniel’s top choice.

Belen

Carlos

Daniela2 b

a
2

Step 2: S2 = {a2, b, c}
Remove (Belen, a2) and (Carlos, b)

There is a cycle: [Carlos, b, Belen, a2, Carlos]. Assign Carlos to school b and Belen to school a, and
remove them from the market because schools a and b have now exhausted their respective capacities.

In Step 3, There is only one student, Daniel and one school, c with capacity qc = 1.

Danielc

Step 3: S3 = {c}
Remove (Daniel, c)

There is a trivial loop: [Daniel, c, Daniel]. Assign Daniel to school c and remove them from the market.
There are no more students left and there are no schools with excess capacity. The algorithm stops. The
final match produced is the same as in Example 4.13.

To summarize, the school choice TTC yields efficient matching, but the matching may be unstable. More-
over, the associated mechanism is strategy-proof.

4.6.1 The Boston school match

Boston’s school district consists of over 60,000 students between kindergarten and twelfth grade in almost 140
schools. School assignments essentially take place in grades K, 1, 6, and 9. Each year, there are on average
about 4000 students entering each of those grades. In Boston, the priorities for each school are constructed as
follows, in this order:

1. The students with the highest priority at a school are those who have an older sibling attending that
school.

2. Next are the students who live within walking distance of the school, the walk zone, and these zones are
defined by the Boston Public Schools (BPS). Those students have priority over half of the seats offered
by that school. For instance, if a school can admit 100 students, the students in the walk zone have higher
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priority than the other students for only 50 seats. For the remaining 50 seats, there is no higher priority
granted to the student living near the school compared to the other students.

3. Last are all the other students.

Traditionally, the Boston school match has used the Immediate acceptance algorithm. Clearly, truthful reporting
of preferences has been an issue. Similar mechanisms have been used in other U.S. cities, e.g. Minneapolis.
Glazerman and Meyer (1994) document that

It may be optimal for some families to be strategic in listing their school choices. For example, if
a parent thinks that their favorite school is oversubscribed and they have a close second favorite,
they may try to avoid “wasting” their first choice on a very popular school and instead list their
number two school first.

It has been noted that, In Boston, some parents understood the matching mechanism well and could manipulate
at low costs, whereas other parents found it difficult to strategize over the mechanism. When a reform of
the Boston school match mechanism was suggested by Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005b),
the BPS sought to modify the match mechanism to make it strategy-proof with the objective of “leveling the
playing field” in order to shed advantages for the sophisticated group of parents. In 2004, the choice then boiled
down to choosing between stable and efficient school matches. Once this is decided the choice of algorithm
was clear—it was either the Deferred Acceptance for school choice or the school choice TTC.

One interpretation of the school choice TTC is that, given the priority listings of schools, students can
“trade” priorities among themselves which is similar to trading houses in the problem of house allocation with
existing tenants. If students are allowed to do so, efficiency is the natural choice. By contrast, if priorities are
not tradable, i.e., students have no ownership of their enrollments, then stability is the natural choice. Although
the task force of the BPS advocated for the Top Trading Cycle algorithm, it was the Deferred Acceptance
algorithm that was eventually adopted, in 2007.

4.6.2 The New York City school match

The case of New York City is quite different from that of Boston for several reasons. First, the problem is of a
much larger scale. There are over a million students attending public schools in New York, with about 90,000
students entering one of the 500 different academic programs offered by public high schools. Unlike Boston,
the reform of school choice in New York did not start at the same time the BPS started the reform. Instead,
several people at the New York City Department of Education (NYCDOE) were aware of the National Resident
Matching Program, and wondered if it could be adapted to New York City.

The procedure in place in New York was quite different from that of Boston. Without entering into much
detail, the assignment mechanism in New York was decentralized. Students would apply to schools, and the
schools had to decide which students to admit, reject, or place on a waiting list. Students were restricted in the
number of applications they could send (they also had to establish a preference ordering over schools that could
be observed by the schools). Some schools also faced constraints that others did not. For instance, schools
offering unscreened programs admitted students by lottery, whereas schools that had the status of zone schools
had to give priority to students from the neighborhood, and schools offering screened programs evaluated
students individually.

Students would receive decision letters from schools, and successful applicants could accept at most one
offer (and be on one waiting list). After this, schools with vacant positions would make new offers to students.
There were three such rounds of processing. This clearly was not enough, as about one-third of the students
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were ending up without any school and had to be assigned to a school by the authorities (and of course that
school was not on their preference list). In other words, the assignment procedure in New York City suffered
from congestion.

The fact that many schools could decide which students to admit had a profound impact on the design
of the new system. Some schools were not only choosing which students to accept or reject but were also
strategically concealing their capacities from the central administration. By not revealing their exact capacities,
schools can reserve places that would be assigned later (and thus have more choice over which students to
admit). If the assignment is stable, the incentives for schools to conceal their capacities are minimized. Also,
unlike in Boston, many schools in New York City have special academic programs that target students with
specific needs and skills. In other words, unlike in Boston, many schools in New York City do have preferences
among students. Finally, the fact that many schools were strategic in their decisions (trying to game the system)
convinced the team of market designers (see Abdulkadiroğlu, Pathak, and Roth, 2005a) that the situation in
New York was more akin to the college admission problem, rather than the house allocation problem. The
experience and the lessons from the medical match (see chapter 10) made it clear that stability of the matching
was the key property that was needed in New York.

Once it was clear that an algorithm that produces stable matching was needed, there came another question:
should we use the students-proposing or the schools-proposing version of DA? The choice of the student-
proposing version was quickly considered the best option for the reasons we have already analyzed in Chapter
3:

1. It is strategy-proof for the students and produces the student-optimal matching.

2. Also, there is no algorithm that produces stable matchings such that it is dominant strategy for the schools
to reveal their true preferences and their true capacities [cf. Proposition 3.3].

In the first year of operation of the new matching mechanism, over 70,000 students managed to be matched to a
school on their initial preference list (20,000 more than under the previous system). Students who would not be
assigned to a school (and did not withdraw from the New York City public schools) could submit a secondary
preference list containing schools that still had vacancies. At the end of the matching process, there were about
3000 students who were administratively matched to a school that was not on their preference list (compared
to 30,000 students under the previous system).
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Chapter 5

Concluding remarks

In Part II, we have considered markets wherein trades do not occur through monetary transfers (as opposed
to Part I). There are either no prices or prices (if any) do not influence market outcomes. Consider (private)
schools in Mexico City. Each schools in general charges same fee to all its students (at least of the same cohort),
and the parents do not bargain with the schools over fees. So matching of students to schools is determined by
attributes other than prices. All relevant information are summarized in the preference orderings of each market
participant.

We have analyzed two-sided markets where transactions take place in the absence of monetary transfers
among agents. A two-sided matching market consists of two disjoint sets of individuals (e.g. firms and workers,
schools and student, houses and tenants). Two categories have been considered—two-sided markets with two-
sided preferences and two-sided markets with one-sided preferences. In the first category fall the marriage
market and the college admission problem. In contrast, the housing market and the kidney exchange fall in
the second category. School choice may fall in both categories. It is akin to the college admission problem,
but instead of having preferences over students, schools may have priority lists. On the other hand, because
schools do not have preferences, school choice also looks similar to the housing market. For this reason, we
have analyzed school choice both in Chapters 3 and 4.

The distinguishing features of the two types of markets (with two-sided and one-sided preferences) are as
follows. As representative of each category, consider the marriage market and the housing market. In both
types of markets, in general, the set of core allocations is non-empty (for the marriage market core coincides
with the set of stable matching outcomes), and core allocations can be reached through distinct algorithms such
as the Deferred Acceptance and the Top Trading Cycle algorithms. However, what makes these two types of
markets different is in terms of their incentive properties. In the marriage market, there are no mechanisms that
can truthfully implement the core allocations [cf. Theorem 2.4]. By contrast, in the housing market, the core
allocation (it is unique) can be reached by a strategy-proof mechanism. The intuition behind this contrasting
feature regarding stability-incentive tradeoff is simple. In the marriage market, although the core is non-empty,
it consists of allocations that generate conflicting interests between the participants on opposite sides. Hence,
any mechanism fails to align preferences in the marriage market. A mechanism is strategy-proof only for the
proposing side (when it uses the Deferred Acceptance algorithm). With one-sided preferences in the housing
market, on the other hand, conflicting interests do not arise, and hence, any mechanism that selects a core
allocation is also dominant strategy implementable.

Intermediate between these two sorts of problem is the roommate problem wherein there is only one set of
agents, each of whom has preferences over the rest. Such markets may be called a one-sided matching market.
The core of such one-sided market can be empty. The reason is that when two agents strongly prefer to be
together, the matching problem presents complementarity. If such complementarity is strong, a core allocation
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may fail to exist. There are two-sided matching markets that may present features of the one-sided markets.
For example, the medical match in the presence of couples, who may decide to accept an inferior allocation but
prefer to be together. In job matching, a worker may have preferences over potential co-workers. Analysis of
such models have been omitted for the interest of time. For a detailed discussion on similarities and differences
among different types of market structures, see (Roth, 1982b).
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Part III

Two-sided matching with transfers
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Chapter 6

Matching with transfers

Consider the housing market with public endowments in Chapter 4. Now, we allow for monetary transactions
between sellers and buyers of houses. In particular, the seller of any house will set a price at which trade may
occur. Because there are monetary transfers between one market participant to the other, we shall represent
preferences in terms of utility functions. The setup will be the following. The economy comprises a set of
sellers or houses, H and a set of buyers, I . Each potential buyer can consume only one unit, i.e., can buy only
one house. On the other hand, each house can have only one buyer. Thus, the present framework is a one-to-one
matching market (similar to the marriage market). Formally,

Definition 6.1: One-to-one matching

A one-to-one matching of the housing market with transfers is a mapping µ : H → I such that (i)
µ(h) ∈ I ∪ {h} for each h ∈ H; (ii) µ(i) ∈ H ∪ {i} for each i ∈ I; and (iii) µ(h) = i if and only if
µ(i) = h for all house-buyer pairs (h, i) ∈ H × I .

The definition of one-to-one matching is the same as that of the marriage market. However, we shall
introduce money in a very particular way. To fix ideas, we would first consider a discrete market with two
houses and two buyers.

6.1 House quality and buyer valuation in a discrete housing market

Let the set of sellers be S = {s1, s2}. Because each one has a unit of house to sell, S and H are isomorphic,
and hence, we shall treat S and H in an equivalent fashion. Although houses are sold in unit quantities, they
differ in quality. Let qj be the quality of house j with q1 > q2 > 0, i.e., house 1 is a better-quality house.
House j can be traded at price pj , and its seller has a reservation price rj > 0. So, seller j derives utility

vj = max{pj − rj , 0}.

On the other hand, the two buyers, B = {b1, b2} are distinct with respect to their valuation for a house.
Formally, let θi be the valuation of buyer i with θ1 > θ2 > 0, i.e., buyer 1 is the high-valuation buyer. Buyer i
derives utility from consuming quality qj

U(θi, qj) = θiu(qj)− pj ,

where u(·) is the utility from the consumption of quality. We immediately establish the following result.
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Proposition 6.1: Who gets what?

If u(q) is an increasing function, then the optimal matching involves assigning house 1 to buyer 1, and
house 2 to buyer 2, i.e., µ(h1) = b1 and µ(h2) = b2.

Proof. Suppose on the contrary that b1 is assigned h2 and b2 is assigned h1. Then, it must be the case that

θ1u(q2)− p2 ≥ θ1u(q1)− p1, (6.1)

θ2u(q1)− p1 ≥ θ2u(q2)− p2. (6.2)

Summing (6.1) and (6.2), and rearranging, we obtain

(θ1 − θ2)[u(q1)− u(q2)] ≤ 0.

Because θ1 > θ2, the above inequality implies that u(q1) ≤ u(q2) which is a contradiction to the fact that
u′(q) > 0 because q1 > q2. �

The above proposition asserts that the high-valuation buyer must obtain the better-quality house. This is
easily generalizable to n ≥ 2 buyers and n ≥ 2 houses. We have ignored the analysis that in equilibrium each
buyer is indeed assigned one house. The proof of such existence result can be found in Shapley and Shubik
(1971).

6.2 A continuum housing market and positive assortative matching

Let us now generalize the house allocation with transfers to the housing market with many houses and many
buyers. In particular, Let Q ≡ [qmin, qmax] ⊂ R+ be the set of house qualities, and Θ ≡ [θmin, θmax] ⊂ R+

be the set of valuations. Let p(q) be the price of a house of quality q, and r(q) be its reservation price. On the
other hand, a buyer with valuation θ derives utility from consuming a house of quality q, which is given by:

u(θ, q)− p(q) with uθ(θ, q), uq(θ, q) > 0.

We impose the following property on the function u(θ, q).

Definition 6.2: Increasing differences

A function u(θ, q) is said to have increasing differences (ID) in (θ, q) if for any two q′ and q′′ with
q′′ > q′, the function

u(θ, q′′)− u(θ, q′)

is an increasing function of θ.

Because each house must be sold in unit quantity, what matters for the housing market is the house quality.
Likewise, for the buyer-side of the market, the crucial aspect is the differences in buyer valuation. Thus, we
can define a type-type matching or assignment.

Definition 6.3: Positive assortative matching

Let µ : Q → Θ be a type-type matching rule that assigns a house of quality q to a buyer of valuation
θ, i.e., for each house q ∈ Q, there is a buyer µ(q) ∈ Θ. A matching is a positive assortative matching
if µ′(q) ≥ 0, i.e., for any two q′ and q′′ with q′′ > q′, and any two θ′ and θ′′ with θ′′ > θ′, we have
µ(q′) = θ′ and µ(q′′) = θ′′.

The following result provides sufficient condition for an optimal assignment.
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Theorem 6.1: Who gets what?

If u(θ, q) has increasing differences in (θ, q), then the optimal matching is positive assortative.

Proof. Note first that the increasing differences property of u(θ, q) is equivalent to

u(θ′′, q′′)− u(θ′′, q′) ≥ u(θ′, q′′)− u(θ′, q′) (6.3)

for any θ′′ > θ′ and q′′ > q′. In a way of contradiction, suppose u(θ, q) has increasing differences in all (θ, q),
but there are (θ′, θ′′) with θ′′ > θ′, and (q′, q′′) with q′′ > q′ such that µ(q′′) = θ′ and µ(q′) = θ′′. Then it
must be the case that

u(θ′′, q′)− p(q′) ≥ u(θ′′, q′′)− p(q′′), (6.4)

u(θ′, q′′)− p(q′′) > u(θ′, q′)− p(q′). (6.5)

Summing (6.4) and (6.5), we obtain

u(θ′′, q′′)− u(θ′′, q′) < u(θ′, q′′)− u(θ′, q′)

which contradicts the fact that u(θ, q) has increasing differences for all (θ, q), i.e., the inequality in (6.3). �

So far, we have not defined the equilibrium of the housing market with transfers. The equilibrium not only
consists of the optimal allocation, but also the house prices, p(q). The equilibrium of the market is the standard
Walrasian equilibrium of a discrete good economy. We do not define the equilibrium formally in order to avoid
technicalities. The following result characterizes the Walrasian prices.

Proposition 6.2: Equilibrium prices

The equilibrium price of a house with quality q, p(q) is a strictly increasing function.

Proof. Take any two houses with qualities q′ and q′′ with q′′ > q′. Then, by Theorem 6.1, there are θ′ and θ′′

with θ′′ > θ′ such that µ(q′) = θ′ and µ(q′′) = θ′′. Then, it must be that

u(θ′, q′)− p(q′) ≥ u(θ′, q′′)− p(q′′) ⇐⇒ p(q′′)− p(q′) ≥ u(θ′, q′′)− u(θ′, q′).

The right-hand-side of the above inequality is strictly positive because uq(θ, q) > 0. Therefore, p(q′′) > p(q′),
i.e., p(q) is strictly increasing in q. �

p

q

θ′

θ′′

q′ q′′

p′

p′′
p̂

Figure 6.1: Increasing differences is a single-crossing condition.

Why increasing differences implies positive sorting has a simple intuition. Note that Definition 6.2 reads
as the marginal utility of consuming greater quality is increasing in buyer valuation which is depicted in Figure
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6.1. Let us now consider the utility of a type-θ buyer who consumes quality q and pays p, which is given by

U(q, p; θ) ≡ u(θ, q)− p

If we set a constant utility level, ū, i.e., U(q, p; θ) = ū, we get the indifference curve of each θ in the q-p space,
whose slope is given by

dp

dq
= uq(θ, q).

The increasing differences condition then assets that the indifference curve is steeper for higher θ. As a conse-
quence, any two indifference curve may cross only once (single-crossing).

What is the implications of single-crossing for the equilibrium? In Figure 6.1, let two quality-price com-
binations, (q′, p′) and (q′′, p′′), with q′′ > q′ and p′′ > p′, be on the same indifference curve of the buyer
with valuation θ′. This means that θ′ is willing to pay p′′ for buying a higher-quality house, q′′. Then, the
buyer of type-θ′′ (higher-valuation buyer) is willing to pay more, i.e., p̂ > p′′ for consuming quality q′′. As a
consequence, θ′′ obtains a house of higher quality and ends up paying more in equilibrium.
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Part IV

Auctions
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Chapter 7

Auctions

So far, we have seen (matching) markets or institutions that comprise a set of rules in order to allocate “individ-
uals” or “objects” among “individuals” or “organizations”. On the one hand, [in Part II] there are no monetary
transactions or even if there are, they do not play any role in the equilibrium allocations. On the other, [in Part
III] introduction of monetary transfers makes equilibrium price of an object depend on the willingness-to-pay,
which are public knowledge. We now relax the assumption of public information regarding willingness-to-pay.
In such environments, prices will still depend on willingness-to-pay; however, we have to elicit willingness-
to-pay in order to elicit prices. Thus, Auctions are institutions that are not only meant to set allocation rules,
but also they comprise payment rules, i.e., how much market participants must pay to obtain a single object or
several objects. Moreover, auctions are indirect mechanisms that are used to reveal private information of the
market participants.

We shall consider a simple problem of market design wherein a single object to be allocated to one of
many potential buyers whose valuations for the object are private information. This is a special case of the
housing market where more than one objects are allocated among the individuals. However, the objective of a
mechanism would be to elicit the true willingness-to-pay of the market participants as we have seen Chapter
1. Because there are monetary transfers between buyer(s) and the auctioneer, we shall represent preferences
in terms of utility functions. Allocating multiple objects or multiple units of a single objets are also of great
interest; however, such models are considerably more complicated.

Auctions are designed to accomplish several goals. First, we would like to understand the behavior of
bidders. For this, we will adopt an appropriate notion of equilibrium and analyze equilibrium behavior of
bidders. Second, we would like to compare auction formats in terms of their equilibrium outcomes. When
comparing auction formats, we usually take two criteria into account—(a) efficiency and (b) expected revenue
to the seller. The notion of efficiency is the standard one of ex-post Pareto efficiency that we have analyzed for
the housing market in Chapter 4. In the context of single-object auction, the concept of efficiency is simple—an
auction is efficient if the object is allocated to the highest-valuation bidder. Expected revenue, on the other hand,
reflects an ex-ante objective of the seller, which is to maximize expected revenue across auction formats. Under
reasonable conditions, we are able to rank standard auctions in terms of efficiency and expected revenue.

7.1 Auction formats

There are two main popular auction formats—open-bid auction and sealed-bid auction. In an open-bid auction,
the bids are announced publicly, and hence, all bids are observable. In a sealed-bid auction, on the other hand,
potential buyers of an object submit their bids in sealed envelopes, and thus, bids are not observed by others.
Examples of open-bid format includes
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• Ascending price auction or English auction. In this format, the auctioneer announces the price starting
from a given price (called the reserve price) which increases as the auction advances. The potential
buyers announces whether they want the object at the last announced price. The auction stops when only
one bidder is left who wins the object and pays their bid. Artworks, antiques, etc. are sold in this format.

• Descending price auction or Dutch auction. The price starts at a high level, and starts to drop as the
auction goes on. The potential buyers call out “mine”. The first individual to call out gets the object, and
pays their bid. Fresh food items, flowers, etc. are sold in this format.

On the other hand, examples of sealed-bid auction are

• First-price auction. In this format, all bidders simultaneously submit bids in sealed envelopes. The
highest bid wins and the winner pays their bid.

• Second-price auction or Vickrey auction. Similar to the first-price auction. However, the winner pays the
highest losing bid or the second-highest bid.

• Third-price auction. Winner pays the third-highest bid.

• All-pay auction. Everybody pays their bid irrespective of winning or losing.

Another categorization of auctions is based on informational aspects—private value auction and common
value auction. In a private value auction, bidder valuation is private information. For example, the willingness-
to-pay for a valuable painting is highly subjective. Bidders do not know each others’ valuations. By contrast, in
a common value auction, all bidders have similar objective valuation for an object. For example, in a corporate
takeover bid, all potential buyers of a company value the target more or less the same as the target company’s
financial statement is publicly available.

Example 7.1: First- and second-price auctions

There are four potential buyers of a car, i = 1, 2, 3, 4. The bids are b1 = $7, b2 = $9, b3 = $4 and
b4 = $3. In the first-price auction, bidder 2, the highest bidder wins the object, and pays $9. In the
second price auction also bidder 2 wins, but they pay $7.

The revenue for the auctioneer in the second price-auction is clearly lower as they obtain $7 as opposed
to $9 in the first-price auction. Then, why does the auctioneer settle for the second-highest bid? As we shall
see that bidding strategies change according to the payment rule. However, the expected revenues of first-
and second-price auctions are the same, and hence, the auctioneer is indifferent between the two formats. In
most of the auction formats, the allocation rules are the same—the highest bidder wins the object. The formats
mostly differ in payment rules. Of course, there are exceptions. In Chinese auction, the object is allocated
probabilistically. In particular,

Prob. {bidder i wins by bidding bi} =
bi∑n
j=1 bj

.

Example 7.2: English auction

There are four potential buyers of a car, i = 1, 2, 3, 4. θ1 = $8, θ2 = $12, θ3 = $5 and θ5 = $2. Price
starts at 0 and increases. Bidders interested in purchasing at current price press button to indicate. Price
stops when all but one bidder (say bidder 2) drops out. Bidder 2 wins at the stopped price.

We shall later learn that the English auction and the second price auctions are strategically equivalent. On
the other hand, the Dutch and the first-price auctions are strategically equivalent.
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7.2 A formal model of independent private value auction

We describe a formal canonical model of private value auctions. There is a set I = {1, . . . , n} bidders with n ≥
2. There is a single object to be sold. Bidder i’s valuation or willingness-to-pay, θi is a random variable which
is distributed according to the cumulative distribution function Fi(θi) on a support [0, v]. Valuations of any
two bidders are independent of each other. We shall also assume that valuations are identically distributed, i.e.,
Fi(·) = F (·) for all i ∈ I . In other words, all bidders draw valuations from the same probability distribution.
Assume that F (θi) is continuous with the pdf f . Also, all bidders are risk neutral.

7.2.1 First-price sealed-bid auction

Recall from Chapter 1 that we have solved for first-price auction for 2 bidders with linear bidding strategies
where valuations are drawn from a uniform distribution. Our objective here is to generalize to n ≥ 2 bidders
who can submit any non-linear bidding function and valuations are drawn from the distribution function F (·).
The game is as follows. All n bidders submit simultaneously (in sealed envelopes) their bids, b1, . . . , bn. The
highest bidder wins and pays their valuation.

We shall analyze a symmetric Bayesian Nash equilibrium (BNE) of the bidding game, i.e., bi(θi) = b(θi)

for all i ∈ I .1 Recall that in a Bayesian game, strategy of any player is a function of their type. We shall assume
that b(θi) is increasing, continuous and differentiable on [0, v]. To solve for the symmetric BNE, let all bidders
j, different from i, submit the identical bidding function, i.e., bj(θj) = b(θj) for all j 6= i. Then, bidder i’s
expected payoff (as a function of their bid bi and valuation θi) is given by

ui(bi, b−i, θi) = (θi − bi)× Prob.{b(θj) ≤ bi, for all j 6= i} = (θi − bi)[F (b−1(bi))]
n−1.

Thus, bidder i chooses bi to solve
max
bi

(θi − bi)[F (b−1(bi))]
n−1.

The first-order condition of the above maximization problem is given by

−(F (b−1(bi)))
n−1 + (θi − bi)(n− 1)(F (b−1(bi)))

n−2f(b−1(bi))(b
−1)′(bi) = 0.

Because we want to show that bi = b(θi) is the best response of bidder i against bj = b(θj) for all j 6= i,
replace bi by b(θi) in the above expression. Note that (b−1)′(b(θi)) = 1/b′(θi). Finally, ignoring the subscript
i, the above first-order condition gives rise to the following linear differential equation

b′(θ) = (n− 1)(θ − b(θ)) · f(θ)

F (θ)
. (7.1)

There are several ways to solve the above differential equation. One way to do is the following. Write (7.1) as

b′(θ)(F (θ))n−1 + b(θ){(n− 1)(F (θ))n−2f(θ)}︸ ︷︷ ︸
d
dθ

[b(θ)(F (θ))n−1]

= θ(n− 1)(F (θ))n−2f(θ)︸ ︷︷ ︸
θ· d
dθ

[F (θ)n−1]

. (7.2)

Taking integrals on both sides of (7.2), we obtain∫ θ

0
d[b(x)(F (x))n−1] =

∫ θ

0
xd[(F (x))n−1]. (7.3)

The left-hand-side of (7.3) is b(θ)(F (θ))n−1 because F (0) = 0. On the other hand, the right-hand-side is given
by θ(F (θ))n−1 −

∫ θ
0 (F (x))n−1dx. Then, it follows from (7.3) that

1See Krishna (2010, Appendix G) for the general existence result for first-price auction.
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Proposition 7.1: Equilibrium bidding in first-price auction

In first-price sealed-bid auction with n bidders, and identically and independently distributed bidder
valuations with cdf F (·), the symmetric BNE bidding strategy is given by

b(θ) = θ −
∫ θ
0 (F (x))n−1dx

(F (θ))n−1
. (7.4)

Clearly, all bidders bid below their true valuation, i.e., b(θ) < θ. The reason is simple. If a bidder bids
their valuation and wins the auction, their payoff would be zero which is exactly equal to that if they do not
win. Thus, the objective is to obtain a strictly positive expected payoff in case of winning the object. This is
in contrast with the second price auction wherein the highest bidder wins but pays the highest losing bid, and
hence, bidding own valuation does not induces zero payoffs in case of winning. Note that the degree of bid
shading is given by

θ − b(θ) =

∫ θ

0

[
F (x)

F (θ)

]n−1
dx,

which depends on the number of competing bidders in that as n increases the above quantity approaches zero,
and hence, b(θ) approaches θ. However, the above expression cannot be computed without knowing the ex-
act functional form of F (θ). The following example analyzes the equilibrium bidding function for uniform
distribution.

Example 7.3: First-price auction with uniform distribution

Let θ ∼ U [0, 1]. Then F (θ) = θ. In this case, we have

θ − b(θ) =

∫ θ

0

(x
θ

)n−1
dx =

θ

n
⇐⇒ b(θ) =

(
1− 1

n

)
θ.

Thus, all bidders adopt a linearly increasing bidding strategy. When, n = 2, we have b(θ) = θ/2.

Note in first-price auction (as well as in many “standard” auctions) that the highest-bidder wins the object.
So, it is important to analyze the second-highest bid. Fix a bidder, say i, and let the random variable Yi =

max{θ1, . . . , θi−1, θi+1, . . . , θn}, i.e., Yi be the second-highest valuation among the remaining n−1 bidders,
I \ {i}. Let G denote the distribution function of Yi, i.e., G(y) = Prob.{Yi ≤ y}. Note that

G(y) = Prob.{Yi ≤ y}
= Prob.{θ1 ≤ y}︸ ︷︷ ︸

F (y)

× . . . Prob.{θi−1 ≤ y}︸ ︷︷ ︸
F (y)

×Prob.{θi+1︸ ︷︷ ︸
F (y)

≤ y} × . . .×Prob.{θn ≤ y}︸ ︷︷ ︸
F (y)

= (F (y))n−1.

If g(y) is the associated density function, it is given by

g(y) = (n− 1)(F (y))n−2f(y).

Note that bidder i with valuation θ wins a first-price auction if b(Yi) ≤ b(θ). Because b(·) is an increasing
function, the winning probability in first-price auction is given by

Prob.{b(Yi) ≤ b(θ)} = Prob.{Yi ≤ θ} = G(θ) = (F (θ))n−1.

With the above modification, (7.2) can be written as

b′(θ)G(θ) + b(θ)g(θ) = θg(θ). (7.5)
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Integrating the above, we obtain

b(θ) =

∫ θ
0 yg(y)dy

G(θ)
= E(Yi | Yi ≤ θ). (7.6)

The symmetric BNE bidding strategy is thus a conditional expectation of the highest competing valuation.
Now, consider the following example.

Example 7.4: First price auction with exponential distribution

Let n = 2 and valuations be exponentially distributed on [0, ∞) with parameter λ > 0, i.e., F (θ) =

1− e−λθ. In this case, the symmetric BNE bidding functions are given by

b(θ) =
1

λ
− θe−λθ

1− e−λθ
.

The equilibrium bidding function is increasing and concave with limθ→∞ b(θ) = 1
λ = E(θ). The

following figure depicts b(θ) for λ = 1.

0

b(θ)

θ

1
λ

An interesting point to note is that the bidders bid less aggressively as their valuation grows. For exam-
ple, when θ = $1, the symmetric equilibrium bid is given by b($1) = $0.42. However, a bidder with
valuation $100 would not bid more than $1, i.e., b($100) ≤ $1. In other words, a 9,900% increase in
valuation explains a maximum of 19.048% increase in the equilibrium bids. The reason is that there is
a very small chance that a bidder with high valuation would lose in equilibrium. In fact, for λ = 1, a
bidder with valuation $1 does not win with probability e−1 = 0.367879, whereas a bidder with valuation
$100,000 loses with probability e−100 = 3.72008−44.

Now, we would relax the assumption of risk-neutral bidders. Let all bidders have identical utility functions
v(·) with v′(·) > 0 and v′′(·) < 0. We continue analyzing a symmetric BNE wherein bi(θi) = b(θi) for all
i ∈ I . Thus, bidder i chooses bi to solve

max
bi

v(θi − bi)× Prob.{b(θj) ≤ bi, for all j 6= i} = v(θi − bi)[F (b−1(bi))]
n−1.

Notice that, relative to the case of risk-neutral bidders, the ex-ante probability that bidder i wins does not
change under risk-aversion. The only difference arises from the utility function of each bidder, v(·). Solving
the following exercise would give us some idea about the behavior of risk-averse bidders in first-price auction.

Exercise 7.1: Risk-averse bidders in first-price auction

Consider a first-price auction with two bidders, i.e., n = 2 wherein each bidder has CRRA utility
function, v(ω) = ωα with 0 < α < 1, and valuations are distributed according to the cdf F (θi) on
[0, v] for all i ∈ I . The two extreme cases correspond to α = 1 that implies risk-neutral bidders,
and α = 0 meaning extreme risk aversion. Find the symmetric BNE bidding function b(θ). Now,
assume that valuations are uniformly distributed on [0, 1]. Show that the bidder bid more aggressively
(i.e., lesser bid shading) as they become more risk-averse (i.e., α decreases) with the limiting case that
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limα→0 b(θ) = θ.

Finally, we discuss the relation between first-price auction and other auction formats, in particular, the
Dutch auction.

Proposition 7.2: Strategic equivalence

The first-price sealed-bid auction is strategically equivalent to the descending-price or the Dutch auction.

The intuition behind the above result is simple. Descending price auction is a dynamic process where the
price starts at a higher level, and starts dropping over time. If a bidder calls out “mine” at any prevailing price,
the auction stops, and that bidder gets the object and pays the prevailing price. Therefore, the bids are not
history-dependent in that the prevailing price contains all the information. If the auction is still on at some
price, say $50, this means that potential buyer has not called out when the price was higher than $50. Because
a bidder just needs to decide at what price he will shout “mine”, he can decide it just before the auction starts.
This implies that we can perfectly study bidders’ behavior in a Dutch auction by assuming that they indeed
choose their bids (i.e., their strategies) before the auction starts. But then, because the winner is the bidder with
the highest bid, and the price is the winner’s bid, the Dutch auction is equivalent to the first-price sealed-bid
auction.

7.2.2 Second-price sealed-bid auction

The equilibrium bidding behavior in a second-price sealed-bid auction has already been analyzed in Chapter 1
[see Example 1.7]. In what follows, we shall compare second-price auction with other auction formats.

Proposition 7.3: Strategic equivalence

The second-price sealed-bid auction is strategically equivalent to the ascending-price or the English
auction.

The English or ascending-price auction is a dynamic auction, and a bidder must decide at every point
whether to continue or not. A potential buyer’s bidding strategy is to pick a price at which to drop out (dynam-
ically). Let bidder i has valuation θi. Should the bidder be willing to buy the object when the price exceeds
valuation? If p > θi, bidder i drops out of the auction. By contrast, if p < θi, then bidder i stays in the auction
until the price reaches their valuation. If θi is the highest valuation, then they pay p = θi. In other words, the
optimal bidding strategy in English auction is bEA(θi) = θi for all i ∈ I . Thus, English auction is strategically
equivalent to second-price sealed-bid auction.

7.3 Revenue equivalence

In this section, we analyze a striking result in auction theory—under very general conditions, an auctioneer is
indifferent among all “standard” auction formats. An auction is said to be standard if the allocation rule dictates
that the highest-bidder is awarded the object.

Theorem 7.1: The revenue equivalence theorem

Suppose that valuations are independently and identically distributed, and all bidders are risk-neutral.
Then, any symmetric and increasing equilibrium of any standard auction, such that the lowest-valuation
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bidder makes zero payment in expectation, yields the same expected revenue to the seller.

Proof. Consider a standard auction format, and denote it by a. Fix a symmetric equilibrium increasing bidding
function b(·) of a. Let ma(θ) denote the equilibrium expected payment a bidder with valuation θ makes in
the auction. Suppose that b(·) is such that ma(0) = 0. Consider a given bidder, say bidder i with valuation θ
who bids b(θ′) instead of the equilibrium bid b(θ). Bidder i wins the auction if b(Yi) ≤ b(θ′) where Yi is the
second-highest valuation. This is equivalent to Yi ≤ θ′. Bidder i’s expected payoff is

πa(θ′, θ) = G(θ′)θ −ma(θ′), (7.7)

where G(y) = (F (y))n−1 is the distribution of the second-highest valuation, Yi. Note that ma(θ′) depends
on the other players’ strategy b through G(θ′) and θ′, but not on the true valuation θ. The first-order condition
associated with (7.7) is

∂πa(θ′, θ)

∂θ′
= g(θ′)θ − dma(θ′)

dθ′
= 0.

At an equilibrium, it is optimal to report θ′ = θ, and hence, the above first-order condition becomes

dma(θ)

dθ
= g(θ)θ

for all θ ∈ [0, v]. Thus,

ma(θ) = ma(0) +

∫ θ

0
yg(y)dy =

∫ θ

0
yg(y)dy = G(θ)× E(Yi | Yi ≤ θ) (7.8)

because, by assumption, ma(0) = 0. Note that ma(θ) is a random variable because θ is a random variable.
The ex-ante expected payment of any given bidder (before they picked their valuation from F (·), and hence,
the terminology, ex-ante) is given by

E[ma(θ)] =

∫ v

0
ma(θ)f(θ)dθ =

∫ v

0

(∫ θ

0
yg(y)dy

)
f(θ)dθ.

The above is how much the seller will receive in expectation from a given bidder. Because there are n bidders,
the expected revenue for the seller from auction a is

E[Ra] = n× E[ma(θ)] = n× E[G(θ)× E(Yi | Yi ≤ θ)]. (7.9)

Because the right-hand-side of (7.9) is independent of the auction format, a, the theorem holds. �

In the following example, we compute the expected revenue of a standard auction for a specific distribution
function of valuations.

Example 7.5: Expected revenue under power distribution

Let valuations follow a power distribution with parameter α > 0 on [0, 1], i.e., F (θ) = θα. The corre-
sponding density function is f(θ) = αθα−1. Thus, G(θ) = θα(n−1), and g(θ) = α(n − 1)θα(n−1)−1

which implies θg(θ) = α(n − 1)θα(n−1). The expected payment of a bidder with valuation θ is given
by

ma(θ) =

∫ θ

0
yg(y)dy =

∫ θ

0
α(n− 1)yα(n−1)dy =

α(n− 1)θα(n−1)+1

α(n− 1) + 1
.

Therefore,

E[ma(θ);α] =

∫ 1

0
ma(θ)f(θ)dθ =

α2(n− 1)

α(n− 1) + 1

∫ 1

0
θαndθ =

α2(n− 1)

(α(n− 1) + 1)(αn+ 1)
.
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The expected revenue thus is

E[Ra;α] = n× E[ma(θ)] =
α2n(n− 1)

(α(n− 1) + 1)(αn+ 1)
.

When α = 1, we have uniform distribution on [0, 1]. The expected revenue is thus given by

E[Ra; 1] =
n− 1

n+ 1
.

From the Revenue equivalence theorem 7.1, it follows that first- and second-price auctions are revenue-
equivalent. We should also be careful in interpreting the revenue equivalence principle. This result holds
under several assumptions—valuations are private and they are independently and identically distributed, and
bidders are risk-neutral. The revenue equivalence theorem thus serves as a benchmark; relaxing some of the
assumptions would allow us to rank various auction formats in terms of seller’s expected revenues. For example,
if bidders were risk-averse, first-price auction yields higher expected revenue than second-price auction (why?).
We have so far also ignored the analysis of efficiency. We have already mentioned that in a single-object auction
wherein the highest-bidder wins, the auction is ex-post efficient. So, all auction formats we have studied above
are efficient.
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