
CHAPTER 3: Differential Calculus

1 Differentiable Functions

First, we revise the concept of differentiability of a real valued function.

Definition 1 Let f : S−→ R be a function where S⊆ R. The function f is differentiable at x ∈ S if

f ′(x) = lim
y→x

f (y)− f (x)
y− x

∈ R

exists. The function f is differentiable on S if it is differentiable at each x ∈ S.

Lemma 1 Let f : S −→ R be a function where S ⊆ R. If f is differentiable at a point x, then it is
continuous at x.

Proof. Take two points x and x+h in S. Hence,

lim
h→0

[ f (x+h)− f (x)] =
[

lim
h→0

f (x+h)− f (x)
h

][
lim
h→0

h
]
= f ′(x).0 = 0.

The above implies that limh→0 f (x+h) = f (x), and hence f is continuous at x. �

The converse of the above lemma is not necessarily true. The function f (x) = |x| is continuous on
[−1, 1], but is not differentiable at x = 0.

Definition 2 (Local maximizer) A point x0 is a local maximizer of a function f : S−→ R, where S⊆R,
if there exists some δ > 0 such that f (x0)≥ f (x) for all x ∈ Bδ (x0).

Theorem 1 Let f : (a, b) −→ R be differentiable on (a, b) and x0 be a local maximizer (minimizer) of
f . Then f ′(x0) = 0.

Proof. Suppose that f has a local maximum at x0. Then we have f (x0 +h)− f (x0)≤ 0 for all h with
|h|< δ , and therefore,

f (x0 +h)− f (x0)

h
≤ 0, for h ∈ (0, δ ),

≥ 0, for h ∈ (−δ , 0).
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Thus, we have

lim
h→0+

f (x0 +h)− f (x0)

h
≤ 0, and lim

h→0−

f (x0 +h)− f (x0)

h
≥ 0.

Differentiability of f implies that

0≤ f ′(x0) = lim
h→0

f (x0 +h)− f (x0)

h
≤ 0,

and hence f ′(x0) = 0. �

Theorem 2 (Rolle’s theorem) Let f : [a, b]−→ R be differentiable on (a, b) such that f (a) = f (b) =α .
Then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. Because f is continuous on a compact set [a, b], by Weirstrass Theorem, there exist two points
xmin and xmax in [a, b] such that f (xmin) = min f (x) and f (xmax) = max f (x). If f (xmin) = f (xmax) = α ,
then f is constant, and hence f ′(x) = 0 for all x ∈ [a, b]. Otherwise, f (xmin) < α for xmin ∈ (a, b)
and f ′(xmin) = 0 (because xmin is a local minimizer) or f (xmax) > α for xmax ∈ (a, b) and f ′(xmax) = 0
(because xmax is a local maximizer), or both. �

Theorem 3 (Mean value theorem) Let f : R −→ R be a differentiable function. If a and b are two
points in R with a < b, then there exists some c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b−a
.

Proof. Define the following function

g(x) = f (x)− f (a)− f (b)− f (a)
b−a

(x−a).

Because g satisfies the assumptions of Rolle’s theorem, there exists some point c in (a, b) such that
g′(c) = 0, i.e.,

g′(c) = f ′(c)− f (b)− f (a)
b−a

= 0.

The above completes the proof. �

If a function f : R −→ R is differentiable at a point x ∈ R, its derivative at x, f ′(x) is interpreted
as the slope of the tangent to the function at the point x. Let g(y) = my+ c be the tangent to f (y) at x.
Intuitively, the derivative of f at x is the best linear approximation of f around x by the function g. This
motivates the following generalized notion of differentiability.

Definition 3 Let f : S−→Rm be a function where S is an open set in Rn. The function f is differentiable
at x ∈ S if there exists an m×n matrix M such that for all ε > 0, there exists a δ > 0 such that y ∈ S and
||x− y||< δ implies

|| f (x)− f (y)−M(x− y)||< ε||x− y||.
Equivalently, f is differentiable at x ∈ S if

lim
y→x

|| f (y)− f (x)−M(y− x)||
||y− x||

= 0.

The function f is differentiable on S if it is differentiable at each x ∈ S.
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The matrix M is called the derivative of f at x and is denoted D f (x). In case of n = m = 1, we denote
D f (x) by f ′(x). Let g : Rn −→ Rm an affine function of the form g(y) = My+ c, where M is an m× n
matrix and c ∈ Rm. The derivative of f at x is the best affine approximation of f around the point x by
the function g. Here, the best means the ratio

|| f (y)−g(y)||
||y− x||

goes to zero as y→ x. Since the values of f and g must coincide at x, we must have g(x) = Mx+c = f (x)
or c = f (x)−Mx. Thus, we may write the approximation function g as

g(y) = My−Mx+ f (x) = M(y− x)+ f (x).

Given this value for g(y), the task of identifying the best affine approximation to f at x now amounts to
identifying a matrix M such that

|| f (y)−g(y)||
||y− x||

=
|| f (y)− f (x)−M(y− x)||

||y− x||
→ 0 as y→ x.

This is precisely the definition of derivative given above.

When f is differentiable on S, the derivative D f itself forms a function from S to Rm×n. If D f : S−→
Rm×n is a continuous function, then f is said to continuously differentiable on S, and we write f is C 1.
Consider now the following example.

Example 1 Let f : R−→ R be given by

f (x) =

{
0, if x = 0,
x2 sin

(
1/x2

)
, if x 6= 0.

For x 6= 0, we have

f ′(x) = 2xsin
(

1
x2

)
−
(

2
x

)
cos
(

1
x2

)
.

Since |sin(·)| ≤ 1 and |cos(·)| ≤ 1, but 2/x→∞ as x→ 0, it is clear that limx→0 f ′(x) is not well defined.
However, f ′(0) does exist! Indeed

f ′(0) = lim
x→0

f (x)− f (0)
x

= lim
x→0

xsin
(

1
x2

)
= 0.

The above implies that f is differentiable at x = 0, but D f is not continuous at this point. Thus, f is not
C 1 on R+. �

Next, given functions f : Rn −→ Rm and h : Rk −→ Rn, their composition is given by the function
f ◦h : Rk −→ Rm whose value at any x ∈ Rk is given by f (h(x)). Then

Lemma 2 (Chain rule of derivative) Let f : Rn −→ Rm and h : Rk −→ Rn, and let x ∈ Rk. If h is
differentiable at x, and f is differentiable at h(x), then f ◦h is itself differentiable at x, and its derivative
is obtained through the “chain rule” as:

D( f ◦h)(x) = D f (h(x))Dh(x).
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2 Partial Derivatives

Definition 4 (Partial derivative) Let f : S−→ R, where S⊂ Rn is open. Let e j denote the vector in Rn

that has a 1 in the j-th place and zeros elsewhere ( j = 1, . . . , n). Then the j-th partial derivative of f is
said to exist at a point x if there is a number ∂ f (x)/∂x j such that

lim
t→0

f (x+ te j)− f (x)
t

=
∂ f
∂x j

(x) or f j(x).

For the partial derivatives, the following theorem is true.

Theorem 4 Let f : S −→ R, where S ⊂ Rn is open. Define the gradient vector of f at x by the vector of
partial derivatives of f at x as O f (x) := [ f1(x), . . . , fn(x)].

(a) If f is differentiable at x, then all partials f j(x) exist at x, and D f (x) = O f (x).

(b) If all the partials exist and are continuous at x, then the derivative of f at x exists and is given by
D f (x) = O f (x).

(c) f is C 1 on S if and only if all partials f j(x) exist and are continuous on S.

Thus to check if f is C 1, we only need to figure out if (a) the partial derivatives all exist on S, and (b)
if they are all continuous on S. On the other hand, the requirement that the partial derivatives not only
exist but be continuous at x is very important for the coincidence of the vector of partials with D f (x).
In the absence of this condition, all partials could exist at some point without the function itself being
differentiable at that point. Consider the following example.

Example 2 Let f : R2 −→ R be given by

f (x, y) =

0, if (x, y) = (0, 0),
xy√

x2+y2
, if (x, y) 6= (0, 0).

We will show that f has all partial derivatives everywhere, but that these partials are not continuous at
(0, 0). Then we will show that f is not differentiable at (0, 0). Since f (x, 0) = 0 for any x 6= 0, it is
immediate that for all x 6= 0,

∂ f
∂y

(x, 0) = lim
ŷ→0

f (x, ŷ)− f (x, 0)
ŷ

= lim
ŷ→0

x√
x2 + ŷ2

= 1.

Similarly, at all points (0, y) for y 6= 0, we have ∂ f (0, y)/∂x = 1. However, note that

∂ f
∂x

(0, 0) = lim
x→0

f (x, 0)− f (0, 0)
x

= 0 = lim
y→0

f (0, y)− f (0, 0)
y

=
∂ f
∂y

(0, 0).

So, ∂ f (0, 0)/∂x and ∂ f (0, 0)/∂y exist at (0, 0). But

lim
x→0

∂ f
∂y

(x, 0) = lim
y→0

∂ f
∂x

(0, y) = 1 6= 0.
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Thus, the partials are not continuous at (0, 0). Now suppose that f were differentiable at (0, 0). Then we
must have D f (0, 0) = (0, 0). Take the points (x, y) of the form (a, a) for some a > 0, and note that every
open neighborhood of (0, 0) must contain at least one such point. Since f (0, 0) = 0, D f (0, 0) = (0, 0)
and ||(x, y)||=

√
x2 + y2, we have

lim
a→0

|| f (a, a)− f (0, 0)−D f (0, 0).(a, a)||
||(a, a)− (0, 0)||

= lim
a→0

a2

2a2 =
1
2
6= 0.

Thus, f is not differentiable at (0, 0). �

The failure of the existence of derivative in the above example induces a generalized notion of derivative
which is studied in the following section. In what follows we extend the concept of derivative of a
vector-valued function.

Definition 5 (Jacobian matrix) Let f : S−→Rm, where S⊆Rn is open, assigns to each x=(x1, . . . , xn)∈
Rn a vector f (x) = ( f 1(x), . . . , f m(x)) in Rm. The Jacobian matrix of f at x ∈ S is the m× n matrix of
partial derivatives which is given by

J f (x) :=


∂ f 1

∂x1
(x) . . . ∂ f 1

∂xn
(x)

...
. . .

...
∂ f n

∂x1
(x) . . . ∂ f m

∂xn
(x)


Following in an extension of Theorem 4 in case of a vector-valued function.

Theorem 5 Let f : S−→ Rm, where S⊂ Rn is open.

(a) If f is differentiable at x, then all partials ∂ f i/∂x j for i = 1, . . . , m and j = 1, . . . , n exist at x, and
D f (x) = J f (x).

(b) If all the partials ∂ f i/∂x j for i = 1, . . . , m and j = 1, . . . , n exist and are continuous at x, then the
derivative of f at x exists and is given by D f (x) = J f (x).

(c) f is C 1 on S if and only if all partials ∂ f i/∂x j for i = 1, . . . , m and j = 1, . . . , n exist and are
continuous on S.

Example 3 Let f : R2 −→ R2 such that f (x, y) = (x2 + x2y+10y, x+ y3). The Jacobian of f at (x, y) ∈
R2 is given by

D f (x, y) =
[

2x(1+ y) x2 +10
1 3y2

]
. �

3 Directional Derivatives

Definition 6 (Directional derivative) Let f : S −→ R, where S ⊂ Rn is open. Let x be a point in S and
let h ∈ Rn. The directional derivative of f at x in the direction h is defined as

D f (x; h) = lim
t→0

f (x+ th)− f (x)
t

, where t ∈ R and ||h||= 1,

whenever this limit exists.
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Theorem 6 Suppose f is differentiable at x∈ S. Then, for any h∈Rn, the directional derivative D f (x; h)
of f at x in the direction h exists, and we have D f (x; h) = O f (x) ·h.

Example 4 Let f (x1, x2) = x1x2, h = (3/5, 4/5) and x0 = (1, 2). First we compute D f (x0; h), and then
verify the above result. The directional derivative of f at x in the direction h is given by

D f (x1, x2; h) = lim
t→0

f (x+ th)− f (x)
t

= lim
t→0

(
x1 +

3t
5

)(
x2 +

4t
5

)
− x1x2

t
=

4x1

5
+

3x2

5
.

Therefore,
D f (x0; h) = D(1, 2; (3/5, 4/5)) = 2.

On the other hand,
O f (x1, x2) = (x2, x1)

Therefore,

O f (x0
1, x0

2) ·h = (2, 1)
(

3/5
4/5

)
= 2 = D f (1, 2; h). �

4 Higher Order Derivatives

We have discussed earlier that, for a function f : S −→ R where S ⊂ Rn is open, which is differentiable
on S, the derivative D f is itself a function from S to Rn. Suppose now that there is an x ∈ S such that
D f is differentiable at x, i.e., such that for each i = 1, . . . , n, the function f j : S−→ R is differentiable at
x. Denote the partial derivative of fi in the direction e j at x by fi j(x) or ∂ 2 f (x)/∂x j∂xi if i 6= j, and by
fii(x) or ∂ 2 f (x)/∂ 2x j if i = j. The Hessian matrix of f at x is given by

H[ f (x)] :=

 f11(x) . . . f1n(x)
...

. . .
...

fn1(x) . . . fnn(x)



Definition 7 A function f : S −→ R, where S ⊂ Rn is open, is twice-differentiable at x if the second
derivative D2 f (x) equals the Hessian matrix of f at x, i.e., D2 f (x) = H[ f (x)]. For n = 1, we denote
D2 f (x) by f ′′(x). If f is twice-differentiable at each x ∈ S, then f is twice-differentiable on S. If for each
i, the cross partial fi j : S −→ R is continuous, then f is twice continuously differentiable on S, and we
write f is C 2.

Theorem 7 (Young’s theorem) If f : S−→R is a C 2 function, then D2 f is a symmetric matrix, i.e., we
have

fi j(x) = f ji(x) for all i, j = 1, . . . , n, and x ∈ S.

The above asserts a one-way implication. The matrix D2 f may fail to be symmetric if a function is not
C 2.
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5 Taylor’s Theorem

In this section we discuss a generalization of the Mean value theorem, known as Taylor’s theorem. The
idea is that a many times differentiable function can be approximated by a polynomial. The notation
f (k)(z) denotes the k-th derivative of f at a point z, and k = 0 implies that f (k)(z) = f (z).

Theorem 8 (Taylor’s theorem in R) Let f : (a, b) −→ R be an m-times continuously differentiable
function. Suppose also that f (m+1)(z) exists for every z ∈ (a, b). Then for any x, y ∈ (a, b), there is
a z ∈ (x, y) such that

f (y) =
m

∑
k=0

f (k)(x)(y− x)k

k!
+

f (m+1)(z)(y− x)(m+1)

(m+1)!
.

Example 5 We would like to approximate f (y) = ey around x = 0 by a polynomial Pm(y). Notice that
f (k)(x) = ex for all k = 0, . . . , m. Then f (k)(0) = 1 for all k = 0, . . . , m. Thus, applying Taylor’s theorem
for R and ignoring the remainder term, we have

ey ≈ 1+ y+
y2

2!
+ . . .+

ym

m!
≡ Pm(y). �

Taylor’s theorem gives us a formula for constructing a polynomial approximation to a differentiable
function. For m = 0, we obtain the Mean Value Theorem. With m = 2, and omitting the remainder, we
get

f (x+h)≈ f (x)+ f ′(x)h.

With f differentiable, the remainder term will be very small. Thus, the linear function on the right-
hand-side of the above equation seems to be a good approximation to f (·) around x. Following is a
generalization of the above theorem.

Theorem 9 (Taylor’s theorem in Rn) Let f : S−→R be a C 1 function, where S⊂Rn is open. Then for
any x, y ∈ S, we have

f (y) = f (x)+D f (x) · (y− x)+R1(x, y), where lim
y→x

R1(x, y)
||y− x||

= 0.

Proof. See Sundaram (1996, pp. 64-65). �

Example 6 Let i, r and π denote the nominal rate of interest, the real rate of interest and the rate of
inflation. The nominal rate of interest is given by the formula 1+ i = (1+ r)(1+π). Define by f (r, π) =
(1+ r)(1+ π). Let (r0, π0) = (0, 0). Notice that D f (0, 0) = (1, 1). Then by Taylor’s expansion of
f (r, π) around (r0, π0) we have

1+ i = f (r, π)≈ f (r0, π
0)+D f (r0, π

0) · (r− r0, π−π
0) = 1+(1, 1)T · (r, π) = 1+ r+π

The above implies i≈ r+π . �
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Example 7 (Rule of 70) With compound interest rate, the time it takes for an initial investment to double
is 70/100r years. Let T is the time taken, i.e.,

(1+ r)T I = 2I

=⇒ T ln(1+ r) = ln2

=⇒ T =
ln2

ln(1+ r)
≈ 0.693147

r
=

70
100r

since ln(1+ r)≈ r. �

Definition 8 (Total derivative) f : S −→ R be a C 1 function, where S ⊂ Rn. The total derivative f at
x ∈ S is defined as

d f (x) = O f (x) ·dx =
n

∑
i=1

fi(x)dxi.

Example 8 (Indifference curves) Let u : R2
+ −→ R be the continuously differentiable utility function

of a consumer derived from the consumption of two goods 1 and 2 in quantities x = (x1, x2). The
indifference curve at level α is the set {x ∈ R2

+ | u(x) = α}. The total derivative of u at x is given by

du(x) = u1(x)dx1 +u2(x)dx2 = 0.

The above equation implies that
dx2

dx1
=−u1(x)

u2(x)
= MRS12(x) .

Given that the marginal utilities are positive, the indifference curve between goods 1 and 2 is negatively
sloped. �

6 Inverse and Implicit Function Theorems

Given two sets A and B, if a function f : A−→ B is one-to-one and onto, then there is a unique function
f−1 : B−→ A such that f ( f−1(b)) = b for all b ∈ B. The function g is called the inverse function of f .

Theorem 10 (Inverse function theorem) Let f : S −→ Rn be a C 1 function, where S ⊂ Rn is open.
Suppose there is a point x ∈ S such that the n×n matrix D f (x) is invertible. Let y = f (x). Then

(a) There are open sets U and V in Rn such that x ∈U, y ∈V , f is one-to-one on V , and f (U) =V .

(b) The inverse function f−1 : V −→U of f is a C 1 function, whose derivative at any point y0 ∈ V
satisfies

D f−1(y0) = (D f (x0))−1, where f (x0) = y0.

Example 9 Let f : R2 −→ R2 be defined by f (x, y) = (x2 + x2y+10y, x+ y3). We will show that f has
an inverse in the neighborhood of (1, 1). We have

D f (x, y) = J f (x, y) =
[

2x(1+ y) x2 +10
1 3y2

]
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Thus, f (1, 1) = (12, 2) and

D f (1, 1) =
[

4 11
1 3

]
,

and det(D f (1, 1)) = 1 6= 0. Therefore, D f (1, 1) is invertible. By the Inverse function theorem, we de-
duce that there is an open set U ⊂R2 containing (1, 1) such that f when restricted to U has a continuously
differentiable inverse f−1, and

D f−1(1, 1) =
[

3 −11
−1 4

]
= (D f (1, 1))−1. �

Now, consider the function F : R2 −→ R defined by F(x, y) = (x− 2)3y+ xey−1, and suppose we are
interested in solving the equation F(x, y) = 0. We will ask the question whether it is possible to define
y as a function of x in some neighborhood of (x∗, y∗). This question motivates the following theorem.
We introduce some additional notations. Given integers m≥ 1 and n≥ 1, let a typical point in Rm+n be
denoted by (x, y), where x ∈Rm and y ∈Rn. For a C 1 function F mapping some subset of Rm+n into Rn,
let DFy(x, y) denote the portion of the matrix DF(x, y), which is an n× (m+n) matrix, corresponding to
the last n variables. Notice that DFy(x, y) is a n×n matrix. Define DFx(x, y) similarly, which is an n×m
matrix.

Theorem 11 (Implicit function theorem) Let F : S−→ Rn be a C 1 function, where S⊂ Rm+n is open.
Let (x∗, y∗) be a point in S such that DFy(x∗, y∗) is invertible, and let F(x∗, y∗) = c. Then, there is a
neighborhood U ⊂ Rm of x∗ and a C 1 function g : U −→ Rn such that

(a) (x, g(x)) is in S for all x ∈U,

(b) g(x∗) = y∗,

(c) F(x, g(x)) = c for all x ∈U.

The derivative of g at any x ∈U is obtained from the chain rule:

Dg(x) =−(DFy(x, y))−1DFx(x, y).

Example 10 Consider the equation F(x, y) = (x−2)3y+xey−1 = 0. We will show that y can be defined
implicitly as a function of x in the neighborhood of (0, 0) but not around (1, 1). First notice that F(0, 0)=
F(1, 1) = 0. We have DFy(x, y) = ∂F(x, y)/∂y = (x−2)3+xey−1. Now, DFy(0, 0) =−8 6= 0, and hence
DFy(0, 0) is invertible. But DFy(1, 1) = 0, and hence DFy(1, 1) is not invertible. �

7 Homogeneous Functions

This is a special class of functions used frequently in economics. In what follows, we will study some
important properties associated with homogeneous functions.

Definition 9 A set S in Rn is a cone if given any x ∈ S, the point λx belongs to S for any λ > 0.
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Definition 10 (Homogeneous function) A function f : S −→ R, where S is a cone in Rn, is homoge-
neous of degree r in S if, for all λ > 0,

f (λx) = λ
r f (x).

Consider the response of a consumer to an equiproportional increase in income and prices of all com-
modities in the market. In this case, the consumer’s choice is, in general, not altered. Formally, the
demand function x(p, m) will be homogeneous of degree zero. Following theorem provides an useful
characterization of homogeneous functions.

Theorem 12 (Euler’s theorem) Let f : S −→ R be a function with continuous partial derivatives de-
fined on an open cone S in Rn. Then f is homogeneous of degree r in S if and only if

n

∑
i=1

fi(x)xi = r f (x), for all x ∈ S. (1)

Proof. Assume that f is homogeneous of degree r, and fix an arbitrary x in S. Then we have, for all
λ > 0,

f (λx) = λ
r f (x).

The continuity of the partials guarantees the differentiability of f . Differentiating the above with respect
to λ and using the chain rule we get

n

∑
i=1

fi(λx)xi = rλ
r−1 f (x).

Putting λ = 1, we get Condition (1). Conversely, suppose that (1) holds for all x ∈ S. Fix an arbitrary x,
and define the function φ for all λ > 0 by

φ(λ ) = f (λx).

Then

φ
′(λ ) =

n

∑
i=1

fi(λx)xi,

and multiplying both sides of the above expression by λ gives

λφ
′(λ ) =

n

∑
i=1

fi(λx)λxi = r f (λx) = rφ(λ ), (2)

where the second equality is obtained by applying (1) at the point λx. Next, define the function F for
λ > 0 by

F(λ ) =
φ(λ )

λ r , (3)

and observe that, using (2),

F ′(λ ) =
λ r−1

(λ r)2 [λφ
′(λ )− rφ(λ )] = 0.

Hence, F is a constant function. Putting λ = 1 in (3), we have F(1) = φ(1), and therefore

F(λ ) =
φ(λ )

λ r = φ(1) =⇒ φ(λ ) = λ
r
φ(1).

Finally, since φ(λ ) = f (λx), we have f (λx) = λ r f (x). �
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Example 11 Following are the examples of homogeneous functions.

(a) The Cobb-Douglas function: f (x) = Axα1
1 . . .xαn

n .

(b) The CES function: f (x) = A
(

∑
n
i=1 αi x−ρ

i

)− 1
ρ

, where A > 0, ρ >−1, ρ 6= 0, αi > 0 for all i, and
∑i αi = 1. �

Homogeneous functions have nice geometric properties. The indifference curves of a homogeneous
function are parallel to each other.
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